The paradoxical upregulation of adiponectin in muscle of obese and diabetic mice may result from lipotoxicity and related oxidative stress. This unexpected finding could be viewed as a local protection to counteract ectopic fat deposition and oxidative damage.
Adiponectin (ApN) exhibits metabolic and antiinflammatory properties. This hormone is exclusively secreted by adipocytes under normal conditions. We have shown that ApN was induced in tibialis anterior muscle of mice injected with lipopolysaccharide (LPS) and in C2C12 myotubes cultured with proinflammatory cytokines. We hypothesized that muscle ApN could be a local protective mechanism to counteract excessive inflammatory reaction and oxidative damage. To test this paradigm, we examined whether muscles of ApN-knockout (KO) mice exhibit a higher degree of oxidative stress and apoptosis than wild-type mice when challenged by ip LPS and whether these abnormalities may be corrected by local administration of ApN. Eventually we investigated the effects of ApN in vitro. When compared with wild-type mice, ApN-KO mice exhibited myocyte degenerescence, especially after LPS. Myocytes of ApN-KO mice also displayed much stronger immunolabeling for markers of oxidative stress (peroxiredoxin-3/5 and heme oxygenase-1) as well as for a lipid peroxidation product (hydroxynonenal). Expression of TNF-α, caspase-6, a marker of apoptosis, and nuclear factor-κB was enhanced as well. Eventually muscle electrotransfer of the ApN gene, which did not induce any rise of systemic ApN, corrected all these abnormalities in LPS-injected ApN-KO mice. Likewise, ApN attenuated LPS-induced production of proinflammatory cytokines and activation of nuclear factor-κB in C2C12 cells. Thus, induction of ApN into skeletal muscle in response to an inflammatory aggression appears to be a crucial mechanism to counteract in an autocrine or paracrine fashion excessive inflammatory damage, oxidative stress, and subsequent apoptosis.
Adiponectin (ApN) is an adipocytokine that plays a fundamental role in energy homeostasis and counteracting inflammation. We examined whether ApN could be induced in a nonadipose tissue, the skeletal muscle, in vivo, and in cultured myotubes in response to lipopolysaccharides or proinflammatory cytokines. We next explored the underlying mechanisms. In vivo, injection of lipopolysaccharides to mice caused, after 24 h, an approximately 10-fold rise in ApN mRNA abundance and a concomitant 70% increase in ApN levels in tibialis anterior muscle. This ApN induction was reproduced in C2C12 myotubes cultured for 48 h with a proinflammatory cytokine combination, interferon-gamma + TNFalpha. This effect occurred in a time- and dose-dependent manner. Several pieces of evidence suggest that nitric oxide (NO) mediates this up-regulation by cytokines in myotubes or muscle. First, ApN was induced in vitro exclusively in the experimental conditions that stimulated NO production. Second, inducible NO synthase mRNA induction or NO production clearly preceded ApN mRNA induction. Third, preventing NO production by inhibitors of the NO synthases, nitro-L-arginine methyl ester or NG-methyl-L-arginine, suppressed the inductive effect of the cytokines in vitro and in vivo. Finally, ApN mRNA induction by cytokines was reproduced in cultured human myotubes. In conclusion, our data provide evidence that adiponectin is up-regulated in vivo and in vitro in human and rodent myotubes in response to inflammatory stimuli. The underlying mechanisms seem to involve a NO-dependent pathway. This overexpression may be viewed as a local antiinflammatory protection and a way to deliver extra energy supplies during inflammation.
Even when TSHR-Ab level is normalized, OS and antioxidant protein expression is high in EOM muscular cells and adipocytes in GO compared with controls. This justifies a supplementation with antioxidants in active as well as chronic GO patients. Orbital muscular cells are also the sources of PPARγ and ApN, which have direct or indirect local protective effects against OS. Modulation of these proteins could be considered as a future therapeutic approach for GO.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.