Agrobacterium tumefaciens-mediated transformation (ATMT) was used for random insertional mutagenesis to identify pathogenicity genes in the hemibiotrophic fungus Colletotrichum higginsianum. A high-throughput primary infection assay on Arabidopsis thaliana seedlings allowed the rapid screening of 8,850 transformants. Forty mutants showing reproducible pathogenicity defects on Arabidopsis and Brassica plants were obtained, and their infection phenotypes were characterized microscopically. Six mutants were impaired in appressorial melanization, fifteen had reduced penetration ability, 14 induced host papillae or hypersensitive cell death, and five were affected in the transition from biotrophy to necrotrophy. Southern blot analysis showed 58% of the transformants had single-site T-DNA integrations. Right-border flanking sequences were recovered from 12 mutants by inverse polymerase chain reaction (PCR) or thermal asymmetric interlaced PCR and were used to isolate the tagged genes from a genomic library. The putative pathogenicity genes encoded homologs of a major facilitator superfamily phosphate transporter, importin-beta2, ornithine decarboxylase, beta-1,3(4)-glucanase, ATP-binding endoribonuclease, carbamoyl-phosphate synthetase, and the polyprotein precursor of N-acetylglutamate kinase and N-acetylglutamyl-phosphate reductase. Six further loci were homologous to proteins of unknown function. None of these genes were previously implicated in the pathogenicity of any Colletotrichum species. The results demonstrate that ATMT is an effective tool for gene discovery in this model pathogen.
SummaryFungal plant pathogens have evolved diverse strategies to overcome the multilayered plant defence responses that confront them upon host invasion. Here we show that pathogenicity of the cucumber anthracnose fungus, Colletotrichum lagenarium, and the rice blast fungus, Magnaporthe grisea, requires a gene orthologous to Saccharomyces cerevisiae SSD1, a regulator of cell wall assembly. Screening for C. lagenarium insertional mutants deficient in pathogenicity led to the identification of ClaSSD1. Following targeted gene replacement, appressoria of classd1 mutants retained the potential for penetration but were unable to penetrate into host epidermal cells. Transmission electron microscopy suggested that appressorial penetration by classd1 mutants was restricted by plant cell wall-associated defence responses, which were observed less frequently with the wild-type strain. Interestingly, on non-host onion epidermis classd1 mutants induced papilla formation faster and more abundantly than the wild type. Similarly, colonization of rice leaves by M. grisea was severely reduced after deletion of the orthologous MgSSD1 gene and attempted infection by the mutants was accompanied by the accumulation of reactive oxygen species within the host cell. These results suggest that appropriate assembly of the fungal cell wall as regulated by SSD1 allows these pathogens to establish infection by avoiding the induction of host defence responses.
Plant basal resistance is activated by virulent pathogens in susceptible host plants. A Colletotrichum orbiculare fungal mutant defective in the SSD1 gene, which regulates cell wall composition, is restricted by host basal resistance responses. Here, we identified the Nicotiana benthamiana signaling pathway involved in basal resistance by silencing the defenserelated genes required for restricting the growth of the C. orbiculare mutant. Only silencing of MAP Kinase Kinase2 or of both Salicylic Acid Induced Protein Kinase (SIPK) and Wound Induced Protein Kinase (WIPK), two mitogen-activated protein (MAP) kinases, allowed the mutant to infect and produce necrotic lesions similar to those of the wild type on inoculated leaves. The fungal mutant penetrated host cells to produce infection hyphae at a higher frequency in SIPK WIPK-silenced plants than in nonsilenced plants, without inducing host cellular defense responses. Immunocomplex kinase assays revealed that SIPK and WIPK were more active in leaves inoculated with mutant fungus than with the wild type, suggesting that induced resistance correlates with MAP kinase activity. Infiltration of heat-inactivated mutant conidia induced both SIPK and WIPK more strongly than did those of the wild type, while conidial exudates of the wild type did not suppress MAP kinase induction by mutant conidia. Therefore, activation of a specific MAP kinase pathway by fungal cell surface components determines the effective level of basal plant resistance.
Medical drugs known to modulate the activity of human ATP-binding cassette (ABC) transporter proteins (modulators) were tested for the ability to potentiate the activity of the azole fungicide cyproconazole against in vitro growth of Mycosphaerella graminicola and to control disease development due to this pathogen on wheat seedlings. In vitro modulation of cyproconazole activity could be demonstrated in paper disk bioassays. Some of the active modulators (amitriptyline, flavanone, and phenothiazines) increased the accumulation of cyproconazole in M. graminicola, suggesting that they reversed cyproconazole efflux. However, synergism between cyproconazole and modulators against M. graminicola on wheat seedlings could not be shown. Despite their low in vitro toxicity to M. graminicola, some modulators (amitriptyline, loperamide, and promazine) did show significant intrinsic disease control activity in preventive and curative foliar spray tests with wheat seedlings. The results suggest that these compounds have indirect disease control activity based on modulation of fungal ABC transporters essential for virulence and constitute a new class of disease control agents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.