Symbioses between dinoflagellates in the genus Symbiodinium (commonly referred to as zooxanthellae) and scleractinian corals are an essential feature for the maintenance of coral reefs. The fine-scale diversity and population structure of the zooxanthellae inhabiting the coral Pocillopora meandrina, a major reef building species in Polynesia, was examined. We used two polymorphic microsatellites to study seven populations from the South Pacific, whose host structuring has been previously investigated. The symbionts of P. meandrina showed high levels of diversity, with more than one zooxanthella genotype being identified in most of the host individuals. Genetic differentiation between sym-biont populations was detected at a large scale (2,000 km) between the Tonga and the Society Archipelagos. Within the Society Archipelago, the two most remote populations (Tahiti and Bora-Bora; 200 km apart) were only weakly differentiated from each other. Statistical tests demonstrated that the symbiont genetic structure was not correlated with that of its host, suggesting that dispersal of the symbionts, whether they are transported within a host larva or free in the water, depends mainly on distance and water currents. In addition, the data suggests that hosts may acquire new symbionts after maternal transmission, possibly following a disturbance event. Lastly, the weak differentiation between symbiont populations of P. verrucosa and P. meandrina, both from Moorea, indicated that there was some host-symbiont fine-scale specificity detectable at the genetic resolution offered by microsatellites.
Studying the effects of urbanization on the dynamics of communities has become a priority for biodiversity conservation. The consequences of urbanization are mainly an increased fragmentation of the original landscapes associated with a decrease in the amount of favorable habitats and an increased pressure of human activities on the remaining patches suitable for wildlife. Patterns of bird species richness have been studied at different levels of urbanization, but little is known about the temporal dynamics of animal communities in urban landscapes. In particular, urbanization is expected to have stronger negative effects on migratory breeding bird communities than on sedentary ones, which should lead to different patterns of change in composition. Using an estimation method accounting for heterogeneity in species detection probability and data collected between 2001 and 2003 within a suburban area near the city of Paris, France, we tested whether these communities differ in their local extinction and turnover rates. We considered the potential effects of patch size and distance to Paris' center as a measure of the degree of urbanization around the patches. As expected, local rates of extinction and turnover were higher for migratory than for sedentary species, and they were negatively related to patch size for migratory species. Mean species richness of the sedentary species increased during the study period and their local turnover rate was negatively related to the distance to the urban core, showing a trend to colonize the most urban patches. These results highlight the very dynamic nature of the composition of some local bird communities in fragmented habitats and help to identify factors affecting colonization and extinction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.