Nitrous acid (HONO) is of considerable interest because it is an important precursor of hydroxyl radicals (OH), a key species in atmospheric chemistry. HONO sources are still not well understood, and air quality models fail to predict OH as well as HONO mixing ratios. As there is little knowledge about the potential contribution of plant surfaces to HONO emission, this laboratory work investigated HONO formation by heterogeneous reaction of NO2 on Zea mays. Experiments were carried out in a flow tube reactor; HONO, NO2 and NO were measured online with a Long Path Absorption Photometer (LOPAP) and a NOx analyzer. Tests were performed on leaves under different conditions of relative humidity (5 to 58 %), NO2 mixing ratio representing suburban to urban areas (10 to 80 ppbv), spectral irradiance (0 to 20 W m-2) and temperature (288 to 313 K). Additional tests on plant wax extracts from Zea mays leaves showed that this component can contribute to the observed HONO formation. Temperature and NO2 mixing ratios were the two environmental parameters that showed substantially increased HONO emissions from Zea mays leaves. The highest HONO emission rates on Zea mays leaves were observed at 313 K for 40 ppbv of NO2 and 40% RH and reached values of (5.6 ± 0.8) × 10 9 molecules cm-2 s-1. Assuming a mixing layer of 300 m, the HONO flux from Zea mays leaves was estimated to be 171 ± 23 pptv h-1 during summertime, which is comparable to what has been reported for soil surfaces.
HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.A new source of ammonia and carboxylic acids in cloud water: The first evidence of photochemical process involving an iron-amino acid complex
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.