Many recent ecotoxicological studies suggest a relationship between freshwater contamination and increasing abundances of motile diatoms (potentially able to move). The capacity to escape would present advantages to species in polluted environments. However, actual motility as a response to toxicants had not been described and required experimental validation. We designed a specific experiment to assess how a field-isolated diatom (Gomphonema gracile) distributes energy to in situ resistance (increased population growth or photosynthesis) and escape (behavioral changes), when exposed to increasing concentrations of the herbicide metolachlor. We report here the dose-time dependent responses of G. gracile populations. They coped with low contamination by resisting in situ, with early hormetic responses highlighted by stimulation of chlorophyll-a fluorescence. At a higher dose, harmful impacts were observed on growth after a few days, but an earlier behavioral response suggested that higher motility (percentage of motile individuals and mean distance crossed) could be involved in escape. Our findings bring new arguments to support the implementation of real measurements instead of motility traits in toxicity assessment. Specifically, motion descriptors have been used as early-warning indicators of contamination in our study. Further works should address the reliability of these endpoints in more complex conditions (interspecific variability, behavior in the field).
This paper presents an optimization of the pharmaceutical Polar Organic Chemical Integrative Sampler (POCIS-200) under controlled laboratory conditions for the sampling of acidic (2,4-dichlorophenoxyacetic acid (2,4-D), acetochlor ethanesulfonic acid (ESA), acetochlor oxanilic acid, bentazon, dicamba, mesotrione, and metsulfuron) and polar (atrazine, diuron, and desisopropylatrazine) herbicides in water. Indeed, the conventional configuration of the POCIS-200 (46 cm(2) exposure window, 200 mg of Oasis® hydrophilic lipophilic balance (HLB) receiving phase) is not appropriate for the sampling of very polar and acidic compounds because they rapidly reach a thermodynamic equilibrium with the Oasis HLB receiving phase. Thus, we investigated several ways to extend the initial linear accumulation. On the one hand, increasing the mass of sorbent to 600 mg resulted in sampling rates (R s s) twice as high as those observed with 200 mg (e.g., 287 vs. 157 mL day(-1) for acetochlor ESA). Although detection limits could thereby be reduced, most acidic analytes followed a biphasic uptake, proscribing the use of the conventional first-order model and preventing us from estimating time-weighted average concentrations. On the other hand, reducing the exposure window (3.1 vs. 46 cm(2)) allowed linear accumulations of all analytes over 35 days, but R s s were dramatically reduced (e.g., 157 vs. 11 mL day(-1) for acetochlor ESA). Otherwise, the observation of biphasic releases of performance reference compounds (PRC), though mirroring acidic herbicide biphasic uptake, might complicate the implementation of the PRC approach to correct for environmental exposure conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.