Lichens are complex symbiotic organisms able to produce a vast array of compounds. The Algerian lichen diversity has only prompted little interest even given the 1085 species listed. Herein, the chemodiversity of four Algerian lichens including Cladonia rangiformis, Ramalina farinaceae, R. fastigiata, and Roccella phycopsis was investigated. A dereplication strategy, using ultra high performance liquid chromatography-high resolution-electrospray ionization-mass spectrometry (UHPLC-HRMS/MS), was carried out for a comprehensive characterization of their substances including phenolics, depsides, depsidones, depsones, dibenzofurans, and aliphatic acids. Some known compounds were identified for the first time in some species. Additionally, the lichenic extracts were evaluated for their antifungal and antimicrobial activities on human pathogenic strains (Candida albicans, C. glabrata, Aspergillus fumigatus, Staphylococcus aureus, and Escherichia coli). Cyclohexane extracts were found particularly active against human pathogenic fungi with MIC values ranging from 8 to 62.5 μg/mL, without cytotoxicity. This study highlights the therapeutic and prophylactic potential of lichenic extracts as antibacterial and antifungal agents.
Leishmania infantum is the causative agent of visceral leishmaniasis transmitted by the bite of female sand flies. According to the WHO, the estimated annual incidence of leishmaniasis is one million new cases, resulting in 30,000 deaths per year. The recommended drugs for treating leishmaniasis include Amphotericin B. But over the course of the years, several cases of relapses have been documented. These relapses cast doubt on the efficiency of actual treatments and raise the question of potential persistence sites. Indeed, Leishmania has the ability to persist in humans for long periods of time and even after successful treatment. Several potential persistence sites have already been identified and named as safe targets. As adipose tissue has been proposed as a sanctuary of persistence for several pathogens, we investigated whether Leishmania infantum could be found in this tissue. We demonstrated both in cell cultures and in vivo that Leishmania infantum was able to infect adipocytes. Altogether our results suggest adipocytes as a ‘safe target’ for Leishmania infantum parasites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.