In 2014, the International Union for Conservation of Nature adopted the Red List of Ecosystems (RLE) criteria as the global standard for assessing risks to terrestrial, marine, and freshwater ecosystems. Five years on, it is timely to ask what impact this new initiative has had on ecosystem management and conservation. In this policy perspective, we use an impact evaluation framework to distinguish the outputs, outcomes, and impacts of the RLE since its inception. To date, 2,821 ecosystems in 100 countries have been assessed following the RLE protocol. Systematic assessments are complete or underway in 21 countries and two continental regions (the Americas and Europe). Countries with established ecosystem policy infrastructure have already used the RLE to inform legislation, land‐use planning, protected area management, monitoring and reporting, and ecosystem management. Impacts are still emerging due to varying pace and commitment to implementation across different countries. In the future, RLE indices based on systematic assessments have high potential to inform global biodiversity reporting. Expanding the coverage of RLE assessments, building capacity and political will to undertake them, and establishing stronger policy instruments to manage red‐listed ecosystems will be key to maximizing conservation impacts over the coming decades.
In order to scavenge the energy of ambient vibrations, bistable vibration energy harvesters constitute a promising solution due to their large frequency bandwidth. Because of their complex dynamics, simple models that easily explain and predict the behavior of such harvesters are missing from the literature. To tackle this issue, this paper derives simple analytical closed-form models of the characteristics of bistable energy harvesters (e.g., power-frequency response, displacement response, cut-off frequency of the interwell motion) by mean of truncated harmonic balance methods. Measurements on a bistable piezoelectric energy harvester illustrate that the proposed analytical models allow the prediction of the mechanical displacement and harvested power, with a relative error below 10%. From these models, the influences of various parameters such as the inertial mass, the acceleration amplitude, the electromechanical coupling, and the resistive load, are derived, analyzed and discussed. The proposed models and analysis give an intuitive understanding of the dynamics of bistable vibration energy harvesters, and can be exploited for their design and optimization.
After completing a part in electron beam melting (EBM), a depowdering operation is required to separate the sintered but unmelted powder from the manufactured part. Depowdering lattice structures can be difficult or even impossible due to their intrinsic shape. The aim of this paper is to propose a criterion to ensure that a lattice structure manufactured by EBM can be depowdered. The objective is to use this criterion during the design phase of lattice structures to make them manufacturable and depowderable. Experiments are conducted on depowdering octet-truss lattice structures with variable bars thickness and mesh sizes. Different criteria are introduced, among them the criterion "hydraulic diameter" of a lattice structure, inspired by the Darcy-Weisbach hydraulic law used to calculate the pressure drop in a pipe. This criterion can be determined using only geometrical characteristics of lattices available in the CAD model of the part. Results show that the levels of depowdering for lattice structures are proportional to this hydraulic diameter. As a validation, a bike stem has been manufactured following the criterion and has demonstrated its efficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.