A series of 6π-electron 4-center species, E(2)N(2) and E(4)(2+) (E=S, Se, Te) is studied by means of ab initio valence bond methods with the aims of settling some controversies on 1) the diradical character of these molecules and 2) the radical sites, E or N, of the preferred diradical structure. It was found that for all molecules, the cumulated weights of the two possible diradical structures are always important and close to 50 %, making these molecules comparable to ozone in terms of diradical character. While the two diradical structures are degenerate in the E(4)(2+) dications, they have on the contrary strongly unequal weights in the E(2)N(2) neutral molecules. In these three molecules, the electronic structure is dominated by one diradical structure, in which the radical sites are the two nitrogen atoms, while the other diradical structure is much less important. The ordering of the various VB structures in terms of their calculated weights is confirmed by the relative energies of individual VB structures. In all cases, the major diradical structure (or both diradical structures when they are degenerate) is (are) the lowest one(s), while the covalent VB structures lie higher in energy. The vertical resonance energies are considerable in S(2)N(2) and S(4)(2+), about 80 % of the estimated value for benzene, and diminish as one goes down the periodic table (S→Se→Te). This confirms the aromatic character of these species, as already demonstrated for S(2)N(2) on the basis of magnetic criteria. This and the high weights and stabilities of one or both diradical structures in all systems indicates that aromaticity and diradical character do not exclude each other, contrary to what is usually claimed. Furthermore, it is shown that the diradical structures find their place in a collective electron flow responsible for the ring currents in the π system of these species.
Early diagnosis of dopamine and serotonin metabolic defects is of importance notably because of the availability of therapeutic strategies able to prevent the associated progressive brain dysfunction. The diagnosis of these diseases relies on the determination of monoamine metabolites and pterins in cerebrospinal fluid (CSF). Current methods involve at least two high-performance liquid chromatography runs of CSF analysis. The first one is devoted to the quantification of dopamine and serotonin metabolites and the second one to the quantification of pterins. Here, we describe a single-step method to measure monoamine neurotransmitter metabolites and pterins of interest in less than 10 min by ultrahigh-performance liquid chromatography coupled to sequential coulometric oxidation and fluorescence detections. All target compounds were quantified in CSF with a small volume (50 μL) and a single filtration step for sample preparation and analysis. After validation, the proposed method was applied to the determination of age-related reference ranges in the CSF of target compounds from a series of 1372 samples collected in France from 2008 to 2014. In the same period, the results obtained for 19 CSF samples from patients with known neurotransmitter disorders and 115 CSF samples with known immune system activation confirmed the expected pattern of changes in monoamine metabolites and pterins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.