Abstract-Computer vision applications have come to rely increasingly on superpixels in recent years, but it is not always clear what constitutes a good superpixel algorithm. In an effort to understand the benefits and drawbacks of existing methods, we empirically compare five state-of-the-art superpixel algorithms for their ability to adhere to image boundaries, speed, memory efficiency, and their impact on segmentation performance. We then introduce a new superpixel algorithm, simple linear iterative clustering (SLIC), which adapts a k-means clustering approach to efficiently generate superpixels. Despite its simplicity, SLIC adheres to boundaries as well as or better than previous methods. At the same time, it is faster and more memory efficient, improves segmentation performance, and is straightforward to extend to supervoxel generation.
Quantum algorithms have the potential to outperform their classical counterparts in a variety of tasks. The realization of the advantage often requires the ability to load classical data efficiently into quantum states. However, the best known methods require O (2 n ) gates to load an exact representation of a generic data structure into an n-qubit state. This scaling can easily predominate the complexity of a quantum algorithm and, thereby, impair potential quantum advantage.Our work presents a hybrid quantum-classical algorithm for efficient, approximate quantum state loading. More precisely, we use quantum Generative Adversarial Networks (qGANs) to facilitate efficient learning and loading of generic probability distributions -implicitly given by data samples -into quantum states. Through the interplay of a quantum channel, such as a variational quantum circuit, and a classical neural network, the qGAN can learn a representation of the probability distribution underlying the data samples and load it into a quantum state.The loading requires O (poly (n)) gates and can, thus, enable the use of potentially advantageous quantum algorithms, such as Quantum Amplitude Estimation.We implement the qGAN distribution learning and loading method with Qiskit and test it using a quantum simulation as well as actual quantum processors provided by the IBM Q Experience. Furthermore, we employ quantum simulation to demonstrate the use of the trained quantum channel in a quantum finance application.
Abstract-It is becoming increasingly clear that mitochondria play an important role in neural function. Recent studies show mitochondrial morphology to be crucial to cellular physiology and synaptic function and a link between mitochondrial defects and neuro-degenerative diseases is strongly suspected. EM microscopy, with its very high resolution in all three directions, is one of the key tools to look more closely into these issues but the huge amounts of data it produces make automated analysis necessary.State-of-the-art computer vision algorithms designed to operate on natural 2D images tend to perform poorly when applied to EM data for a number of reasons. First, the sheer size of a typical EM volume renders most modern segmentation schemes intractable. Furthermore, most approaches ignore important shape cues, relying only on local statistics that easily become confused when confronted with noise and textures inherent in the data. Finally, the conventional assumption that strong image gradients always correspond to object boundaries is violated by the clutter of distracting membranes.In this work, we propose an automated graph partitioning scheme that addresses these issues. It reduces the computational complexity by operating on supervoxels instead of voxels, incorporates shape features capable of describing the 3D shape of the target objects, and learns to recognize the distinctive appearance of true boundaries.Our experiments demonstrate that our approach is able to segment mitochondria at a performance level close to that of a human annotator, and outperforms a state-of-the-art 3D segmentation technique.
Abstract-This paper deals with semantic segmentation of high-resolution (aerial) images where a semantic class label is assigned to each pixel via supervised classification as a basis for automatic map generation. Recently, deep convolutional neural networks (CNNs) have shown impressive performance and have quickly become the de-facto standard for semantic segmentation, with the added benefit that task-specific feature design is no longer necessary. However, a major downside of deep learning methods is that they are extremely data hungry, thus aggravating the perennial bottleneck of supervised classification, to obtain enough annotated training data. On the other hand, it has been observed that they are rather robust against noise in the training labels. This opens up the intriguing possibility to avoid annotating huge amounts of training data, and instead train the classifier from existing legacy data or crowd-sourced maps that can exhibit high levels of noise. The question addressed in this paper is: can training with large-scale publicly available labels replace a substantial part of the manual labeling effort and still achieve sufficient performance? Such data will inevitably contain a significant portion of errors, but in return virtually unlimited quantities of it are available in larger parts of the world. We adapt a state-of-the-art CNN architecture for semantic segmentation of buildings and roads in aerial images, and compare its performance when using different training data sets, ranging from manually labeled pixel-accurate ground truth of the same city to automatic training data derived from OpenStreetMap data from distant locations. We report our results that indicate that satisfying performance can be obtained with significantly less manual annotation effort, by exploiting noisy large-scale training data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.