This work aims at characterizing the three-dimensional organization of liquid crystals composed of collagen, in order to determine the physico-chemical conditions leading to highly organized structures found in biological tissues such as cornea. To that end, we use second-harmonic generation (SHG) microscopy, since aligned collagen structures have been shown to exhibit intrinsic SHG signals. We combine polarization-resolved SHG experiments (P-SHG) with the theoretical derivation of the SHG signal of collagen molecules tilted with respect to the focal plane. Our P-SHG images exhibit striated patterns with variable contrast, as expected from our analytical and numerical calculations for plywood-like nematic structures similar to the ones found in the cornea. This study demonstrates the benefits of P-SHG microscopy for in situ characterization of highly organized biopolymers at micrometer scale, and the unique sensitivity of this nonlinear optical technique to the orientation of collagen molecules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.