Freshwater biodiversity provides important ecosystem services and is at the core of water quality monitoring worldwide. To assess freshwater biodiversity, genetic methods such as metabarcoding are increasingly used as they are faster and allow better taxonomic resolution than manual identification methods. Either sampled organisms are used directly for "bulk metabarcoding," or water is filtered and the extracted environmental DNA serves as a proxy for biodiversity via "eDNA metabarcoding." Despite the advantages of both methods, questions remain regarding their comparability and applicability for routine biomonitoring and stressor impact assessment. Therefore, we compared metabarcoding results from bulk and eDNA samples taken from 19 streams spanning a wide gradient of farming intensities in New Zealand. We performed PCR with highly degenerate cytochrome c oxidase I primers and sequenced libraries on an Illumina MiSeq. The inferred community composition differed strongly between the two methods. More taxa were captured by eDNA than bulk-sample metabarcoding (5,819 vs. 1,483), but more of the commonly used invertebrate bioindicator taxa (mayflies, stoneflies and caddisflies) were found in bulk (47) than eDNA samples (37). Catchment-wide and local land use impacts on communities were detected better by eDNA metabarcoding, especially for non-metazoan taxa. Our findings imply that bulk-sample metabarcoding resembles classical freshwater biomonitoring approaches better, as more indicator macroinvertebrate taxa are captured. However, eDNA metabarcoding might be better suited to infer the impact of stressors on stream ecosystems at larger scales, as many new and potentially more informative taxa are registered. We therefore suggest exploring both methods in future assessments of stream biodiversity.
Movement is a fundamental aspect of fish ecology, and it therefore represents an important trait to monitor for the management and conservation of fish populations. This is especially true for small benthic fish, as they often inhabit part of the catchment where their movement may be restricted by alterations to river connectivity due to human activity. Still, the movement of these small benthic fish remains poorly understood, partly because of their small size and their cryptic nature. This applies to Percilia irwini, an endangered small darter native to the south‐central region of Chile. Its habitat has been affected by the presence of large hydroelectric dams and is currently threatened by the construction of several others. In this study, the authors investigated movement patterns of P. irwini from populations inhabiting different parts of the Biobío catchment, with different levels of connectivity due to natural and/or human‐induced features. The authors combined chronological clustering with random forest classification to reconstruct lifelong movements from multi‐elemental otolith microchemistry transects. The majority of the movements detected occurred in an undisturbed part of the catchment. These were directional upstream movements occurring between capture sites from the lower and the middle reaches of the river, representing a distance of nearly 30 km, a distance much larger than previously thought. Nonetheless, in the part of the catchment where connectivity was affected by human activity, no such movements were identified. This study shows that connectivity alteration could impede naturally occurring movement and further threaten the resilience of populations of P. irwini. Furthermore, the results presented are used to discuss advantages and disadvantages of microchemistry analysis for studying movement of small benthic fish.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.