Breast cancer is one of the main causes of cancer death worldwide. The diagnosis of biopsy tissue with hematoxylin and eosin stained images is non-trivial and specialists often disagree on the final diagnosis. Computer-aided Diagnosis systems contribute to reduce the cost and increase the efficiency of this process. Conventional classification approaches rely on feature extraction methods designed for a specific problem based on field-knowledge. To overcome the many difficulties of the feature-based approaches, deep learning methods are becoming important alternatives. A method for the classification of hematoxylin and eosin stained breast biopsy images using Convolutional Neural Networks (CNNs) is proposed. Images are classified in four classes, normal tissue, benign lesion, in situ carcinoma and invasive carcinoma, and in two classes, carcinoma and non-carcinoma. The architecture of the network is designed to retrieve information at different scales, including both nuclei and overall tissue organization. This design allows the extension of the proposed system to whole-slide histology images. The features extracted by the CNN are also used for training a Support Vector Machine classifier. Accuracies of 77.8% for four class and 83.3% for carcinoma/non-carcinoma are achieved. The sensitivity of our method for cancer cases is 95.6%.
This paper presents an automated method for the segmentation of the vascular network in retinal images. The algorithm starts with the extraction of vessel centerlines, which are used as guidelines for the subsequent vessel filling phase. For this purpose, the outputs of four directional differential operators are processed in order to select connected sets of candidate points to be further classified as centerline pixels using vessel derived features. The final segmentation is obtained using an iterative region growing method that integrates the contents of several binary images resulting from vessel width dependent morphological filters. Our approach was tested on two publicly available databases and its results are compared with recently published methods. The results demonstrate that our algorithm outperforms other solutions and approximates the average accuracy of a human observer without a significant degradation of sensitivity and specificity.
A B S T R A C TBreast cancer is the most common invasive cancer in women, affecting more than 10% of women worldwide. Microscopic analysis of a biopsy remains one of the most important methods to diagnose the type of breast cancer. This requires specialized analysis by pathologists, in a task that i) is highly time-and cost-consuming and ii) often leads to nonconsensual results. The relevance and potential of automatic classification algorithms using hematoxylin-eosin stained histopathological images has already been demonstrated, but the reported results are still sub-optimal for clinical use. With the goal of advancing the state-of-the-art in automatic classification, the Grand Challenge on BreAst Cancer Histology images (BACH) was organized in conjunction with the 15th International Conference on Image Analysis and Recognition (ICIAR 2018). BACH aimed at the classification and localization of clinically relevant histopathological classes in microscopy and whole-slide images from a large annotated dataset, specifically compiled and made publicly available for the challenge. Following a positive response from the scientific community, a total of 64 submissions, out of 677 registrations, effectively entered the competition. The submitted algorithms improved the state-of-the-art in automatic classification of breast cancer with microscopy images to an accuracy of 87%. Convolutional neuronal networks were the most successful methodology in the BACH challenge. Detailed analysis of the collective results allowed the identification of remaining challenges in the field and recommendations for future developments. The BACH dataset remains publicly available as to promote further improvements to the field of automatic classification in digital pathology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.