Visuomotor adaptation is often driven by error-based (EB) learning in which signed errors update motor commands. There are, however, visuomotor tasks where signed errors are unavailable or cannot be mapped onto appropriate motor command changes, rendering EB learning ineffective; and yet, healthy subjects can learn in these EB learning-free conditions. While EB learning depends on cerebellar integrity, the neural bases of EB-independent learning are poorly understood. As basal ganglia are involved in learning mechanisms that are independent of signed error feedback, here we tested whether patients with basal ganglia lesions, including those with Huntington's disease and Parkinson's disease, would show impairments in a visuomotor learning task that prevents the use of EB learning. We employed two visuomotor throwing tasks that were similar, but were profoundly different in the resulting visual feedback. This difference was implemented through the introduction of either a lateral displacement of the visual field via a wedge prism (EB learning) or a horizontal reversal of the visual field via a dove prism (non-EB learning). Our results show that patients with basal ganglia degeneration had normal EB learning in the wedge prism task, but were profoundly impaired in the reversing prism task that does not depend on the signed error signal feedback. These results represent the first evidence that human visuomotor learning in the absence of EB feedback depends on the integrity of the basal ganglia.
Gender differences have been shown across many domains, and motor skills are no exception. One of the most robust findings is a significant sex difference in throwing accuracy, which reflects the advantage of men in targeting abilities. However, little is known about the basis of this difference. To try to dissect possible mechanisms involved in this difference, here we tested for gender variations in a prism adaptation throwing task. We tested 154 subjects in a visuomotor prism adaptation task that discriminates between motor performance, visuomotor adaptation and negative aftereffects. Our results corroborate men's significant better throwing accuracy, although there were no adaptation differences between genders. In contrast, women showed significant larger negative aftereffects, which could be explained by a larger contribution of spatial alignment. These results suggest that different learning mechanisms, like strategic calibration and spatial alignment, may have different contributions in men and women.
BackgroundPrevious studies of SCA2 have revealed significant degeneration of white matter tracts in cerebellar and cerebral regions. The motor deficit in these patients may be attributable to the degradation of projection fibers associated with the underlying neurodegenerative process. However, this relationship remains unclear. Statistical analysis of diffusion tensor imaging enables an unbiased whole-brain quantitative comparison of the diffusion proprieties of white matter tracts in vivo.MethodsFourteen genetically confirmed SCA2 patients and aged-matched healthy controls participated in the study. Tract-based spatial statistics were performed to analyze structural white matter damage using two different measurements: fractional anisotropy (FA) and mean diffusivity (MD). Significant diffusion differences were correlated with the patient's ataxia impairment.ResultsOur analysis revealed decreased FA mainly in the inferior/middle/superior cerebellar peduncles, the bilateral posterior limb of the internal capsule and the bilateral superior corona radiata. Increases in MD were found mainly in cerebellar white matter, medial lemniscus, and middle cerebellar peduncle, among other regions. Clinical impairment measured with the SARA score correlated with FA in superior parietal white matter and bilateral anterior corona radiata. Correlations with MD were found in cerebellar white matter and the middle cerebellar peduncle.ConclusionOur findings show significant correlations between diffusion measurements in key areas affected in SCA2 and measures of motor impairment, suggesting a disruption of information flow between motor and sensory-integration areas. These findings result in a more comprehensive view of the clinical impact of the white matter degeneration in SCA2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.