The aim of this study was to assess the effects of chronic free fatty acid (FFA) exposure on gene expression and the functional state of human pancreatic islets. Chronic exposure of islets to oleate (OA) resulted in a significant reduction in glucose-stimulated insulin secretion (GSIS) compared with control (466G82 vs 234G57 ng/mg DNA, P!0 . 05). OA treatment also led to reduction in total insulin content of the islets (17 609G3816 vs 10 599G3876 ng insulin/mg DNA) and to an increase in the rate of reactive oxygen species (ROS) generation. Interestingly, the suppressive effects of OA on biosynthesis and secretion of insulin were accompanied by alteration in the expression of 40 genes, as determined by microarray analysis and subsequent qPCR validation. The majority of genes regulated by OA encoded metabolic enzymes. The expression of enzymes involved in oxidative defense was elevated, indicating a link between ROS generation and antioxidant defense activation. Additionally, pretreatment of human islets with OA led to a significant increase (30%) in the rate of oxidation of this fatty acid and to a significant decrease (75%) in glucose oxidation. Importantly, individual analysis of gene clusters from the islets of all donors revealed the induction of genes involved in inflammation and immunity, which provides further evidence that FFA are risk factors for the development of type 2 diabetes. In summary, our data indicate that chronic exposure of human islets to FFA activates inflammatory and metabolic pathways that lead to oxidative stress, reduced b-cell insulin content, and inhibition of GSIS.
The aim of our study was to investigate the effect of a single high intensity session of muscle contractions on the activity and expression of citrate synthase (CS) and of the following major antioxidant enzymes: Mn-superoxide dismutase (Mn-SOD), Cu,Zn-superoxide dismutase (Cu,Zn-SOD), catalase (CAT), and glutathione peroxidase (GPX). To accomplish this, soleus muscles of male Wistar rats were subjected to contractions using a intense electrical stimulation (ES) protocol. Soleus muscles were isolated either immediately or 1 h after the contractions and utilized for enzyme activity determination, and for analysis of gene expression by quantitative PCR. A significant increase in maximal activity (63%) and expression (80%) of CS was observed in stimulated soleus muscles, isolated 1 h after ES as compared to controls. However, this effect was not observed in muscles isolated immediately after ES. By using macroarray and Real Time RT-PCR analysis, an increase in expression of Mn-SOD, Cu,Zn-SOD, CAT, and GPX was also found. Interestingly, of these enzymes, only CAT activity was significantly increased (44%) 1 h after ES in soleus muscle. These results indicate that acute ES up-regulates activity and expression of CS and CAT in soleus muscles. This increase in expression of CAT may play an important role in counteracting the potential deleterious effects of elevated oxidative stress induced by a high oxidative demand in skeletal muscles subjected to exercise training.
In this study we investigate the effect of a single session of high-intensity contractions on expression of pleiotropic genes and, in particular, those genes associated with metabolism in soleus muscle from electrically stimulated (ES) and contralateral (CL) limbs. The right limbs of male Wistar rats were submitted to contractions by 200-ms trains of electrical stimulation at 100-HZ frequency with pulses of 0.1 ms (voltage 24 +/- 3 V) delivered each second for 1 hour. Soleus muscles were isolated 1 hour after contraction, and gene expression was analyzed by a macroarray technique (Atlas Toxicology 1.2 Array; Clontech Laboratories). Electrical stimulation increased expression in 92 genes (16% of the genes present in the membrane). Sixty-six genes were upregulated in both ES and CL soleus muscles, and expression of 26 genes was upregulated in the ES muscle only. The most altered genes were those related to stress response and metabolism. Electrical stimulation also raised expression of transcription factors, translation and posttranslational modification of proteins, ribosomal proteins, and intracellular transducers/effectors/modulators. The results indicate that a single session of electrical stimulation upregulated expression of genes related to metabolism and oxidative stress in soleus muscle from both ES and CL limbs. These findings may indicate an association with tissue hypertrophy and metabolic adaptations induced by physical exercise training not only in the ES but also in the CL non-stimulated muscle, suggesting a cross-education phenomenon.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.