SummaryWe describe a second primase in human cells, PrimPol, which has the ability to start DNA chains with deoxynucleotides unlike regular primases, which use exclusively ribonucleotides. Moreover, PrimPol is also a DNA polymerase tailored to bypass the most common oxidative lesions in DNA, such as abasic sites and 8-oxoguanine. Subcellular fractionation and immunodetection studies indicated that PrimPol is present in both nuclear and mitochondrial DNA compartments. PrimPol activity is detectable in mitochondrial lysates from human and mouse cells but is absent from mitochondria derived from PRIMPOL knockout mice. PRIMPOL gene silencing or ablation in human and mouse cells impaired mitochondrial DNA replication. On the basis of the synergy observed with replicative DNA polymerases Polγ and Polε, PrimPol is proposed to facilitate replication fork progression by acting as a translesion DNA polymerase or as a specific DNA primase reinitiating downstream of lesions that block synthesis during both mitochondrial and nuclear DNA replication.
Mitochondrial DNA (mtDNA) faces the universal challenges of genome maintenance: the accurate replication, transmission and preservation of its integrity throughout the life of the organism. Although mtDNA was originally thought to lack DNA repair activity, four decades of research on mitochondria have revealed multiple mtDNA repair pathways, including base excision repair, single-strand break repair, mismatch repair and possibly homologous recombination. These mtDNA repair pathways are mediated by enzymes that are similar in activity to those operating in the nucleus, and in all cases identified so far in mammals, they are encoded by nuclear genes.
The base composition of 25 complete mammalian mitochondrial (mt) genomes has been analyzed taking into account all three codon positions (P1230 and fourfold degenerate sites (P4FD) of H-strand genes. In the nontranscribed L strand, G is the less represented base and A is the most represented one in all cases, while C and T differ among species. H-strand protein-coding genes show an asymmetric distribution of the four bases between the two strands. The asymmetry indexes AT and GC skews on P4FD are much higher than those on P123, suggesting the existence of asymmetrical directional mutation pressure. Relationships between the compositional features and transcription of replication processes have been investigated in order to find a possible mechanism that could explain the origin of this asymmetry. AT and GC skews, the base composition in fourfold degenerate sites, and the number of variable sites for each gene are significantly correlated with the duration of single-stranded state of the H-stranded genes during replication. We tested different replication-related hypotheses, such as the existence of biased dNTP pools, gamma DNA polymerase mispairing, and the asymmetric replication itself. Most of them failed to explain the observed results, hydrolytic deaminations being the only one in agreement with our data. Thus, we hypothesize that one of the crucial processes for the origin of asymmetric and biased base composition of mammalian mitochondrial genomes is the spontaneous deamination of C and A in the H strand during replication.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.