SummaryBackgroundAlthough studies have provided estimates of premature deaths attributable to either heat or cold in selected countries, none has so far offered a systematic assessment across the whole temperature range in populations exposed to different climates. We aimed to quantify the total mortality burden attributable to non-optimum ambient temperature, and the relative contributions from heat and cold and from moderate and extreme temperatures.MethodsWe collected data for 384 locations in Australia, Brazil, Canada, China, Italy, Japan, South Korea, Spain, Sweden, Taiwan, Thailand, UK, and USA. We fitted a standard time-series Poisson model for each location, controlling for trends and day of the week. We estimated temperature–mortality associations with a distributed lag non-linear model with 21 days of lag, and then pooled them in a multivariate metaregression that included country indicators and temperature average and range. We calculated attributable deaths for heat and cold, defined as temperatures above and below the optimum temperature, which corresponded to the point of minimum mortality, and for moderate and extreme temperatures, defined using cutoffs at the 2·5th and 97·5th temperature percentiles.FindingsWe analysed 74 225 200 deaths in various periods between 1985 and 2012. In total, 7·71% (95% empirical CI 7·43–7·91) of mortality was attributable to non-optimum temperature in the selected countries within the study period, with substantial differences between countries, ranging from 3·37% (3·06 to 3·63) in Thailand to 11·00% (9·29 to 12·47) in China. The temperature percentile of minimum mortality varied from roughly the 60th percentile in tropical areas to about the 80–90th percentile in temperate regions. More temperature-attributable deaths were caused by cold (7·29%, 7·02–7·49) than by heat (0·42%, 0·39–0·44). Extreme cold and hot temperatures were responsible for 0·86% (0·84–0·87) of total mortality.InterpretationMost of the temperature-related mortality burden was attributable to the contribution of cold. The effect of days of extreme temperature was substantially less than that attributable to milder but non-optimum weather. This evidence has important implications for the planning of public-health interventions to minimise the health consequences of adverse temperatures, and for predictions of future effect in climate-change scenarios.FundingUK Medical Research Council.
The authors' full names, academic degrees, and affiliations are listed in the Appendix. Address reprint requests to Dr. Kan at P.O. Box 249, 130 Dong-An Road, Shanghai 200032, China, or at kanh@ fudan . edu . cn.Drs. Liu and R. Chen and Drs. Gasparrini and Kan contributed equally to this article.
SummaryBackgroundClimate change can directly affect human health by varying exposure to non-optimal outdoor temperature. However, evidence on this direct impact at a global scale is limited, mainly due to issues in modelling and projecting complex and highly heterogeneous epidemiological relationships across different populations and climates.MethodsWe collected observed daily time series of mean temperature and mortality counts for all causes or non-external causes only, in periods ranging from Jan 1, 1984, to Dec 31, 2015, from various locations across the globe through the Multi-Country Multi-City Collaborative Research Network. We estimated temperature–mortality relationships through a two-stage time series design. We generated current and future daily mean temperature series under four scenarios of climate change, determined by varying trajectories of greenhouse gas emissions, using five general circulation models. We projected excess mortality for cold and heat and their net change in 1990–2099 under each scenario of climate change, assuming no adaptation or population changes.FindingsOur dataset comprised 451 locations in 23 countries across nine regions of the world, including 85 879 895 deaths. Results indicate, on average, a net increase in temperature-related excess mortality under high-emission scenarios, although with important geographical differences. In temperate areas such as northern Europe, east Asia, and Australia, the less intense warming and large decrease in cold-related excess would induce a null or marginally negative net effect, with the net change in 2090–99 compared with 2010–19 ranging from −1·2% (empirical 95% CI −3·6 to 1·4) in Australia to −0·1% (−2·1 to 1·6) in east Asia under the highest emission scenario, although the decreasing trends would reverse during the course of the century. Conversely, warmer regions, such as the central and southern parts of America or Europe, and especially southeast Asia, would experience a sharp surge in heat-related impacts and extremely large net increases, with the net change at the end of the century ranging from 3·0% (−3·0 to 9·3) in Central America to 12·7% (−4·7 to 28·1) in southeast Asia under the highest emission scenario. Most of the health effects directly due to temperature increase could be avoided under scenarios involving mitigation strategies to limit emissions and further warming of the planet.InterpretationThis study shows the negative health impacts of climate change that, under high-emission scenarios, would disproportionately affect warmer and poorer regions of the world. Comparison with lower emission scenarios emphasises the importance of mitigation policies for limiting global warming and reducing the associated health risks.FundingUK Medical Research Council.
Background Concerns have been raised about the possibility that inhibitors of the renin-angiotensin-aldosterone system (RAAS) could predispose individuals to severe COVID-19; however, epidemiological evidence is lacking. We report the results of a case-population study done in Madrid, Spain, since the outbreak of COVID-19.Methods In this case-population study, we consecutively selected patients aged 18 years or older with a PCRconfirmed diagnosis of COVID-19 requiring admission to hospital from seven hospitals in Madrid, who had been admitted between March 1 and March 24, 2020. As a reference group, we randomly sampled ten patients per case, individually matched for age, sex, region (ie, Madrid), and date of admission to hospital (month and day; index date), from Base de datos para la Investigación Farmacoepidemiológica en Atención Primaria (BIFAP), a Spanish primary health-care database, in its last available year (2018). We extracted information on comorbidities and prescriptions up to the month before index date (ie, current use) from electronic clinical records of both cases and controls. The outcome of interest was admission to hospital of patients with COVID-19. To minimise confounding by indication, the main analysis focused on assessing the association between COVID-19 requiring admission to hospital and use of RAAS inhibitors compared with use of other antihypertensive drugs. We calculated odds ratios (ORs) and 95% CIs, adjusted for age, sex, and cardiovascular comorbidities and risk factors, using conditional logistic regression. The protocol of the study was registered in the EU electronic Register of Post-Authorisation Studies, EUPAS34437.Findings We collected data for 1139 cases and 11 390 population controls. Among cases, 444 (39•0%) were female and the mean age was 69•1 years (SD 15•4), and despite being matched on sex and age, a significantly higher proportion of cases had pre-existing cardiovascular disease (OR 1•98, 95% CI 1•62-2•41) and risk factors (1•46, 1•23-1•73) than did controls. Compared with users of other antihypertensive drugs, users of RAAS inhibitors had an adjusted OR for COVID-19 requiring admission to hospital of 0•94 (95% CI 0•77-1•15). No increased risk was observed with either angiotensin-converting enzyme inhibitors (adjusted OR 0•80, 0•64-1•00) or angiotensin-receptor blockers (1•10, 0•88-1•37). Sex, age, and background cardiovascular risk did not modify the adjusted OR between use of RAAS inhibitors and COVID-19 requiring admission to hospital, whereas a decreased risk of COVID-19 requiring admission to hospital was found among patients with diabetes who were users of RAAS inhibitors (adjusted OR 0•53, 95% CI 0•34-0•80). The adjusted ORs were similar across severity degrees of COVID-19.Interpretation RAAS inhibitors do not increase the risk of COVID-19 requiring admission to hospital, including fatal cases and those admitted to intensive care units, and should not be discontinued to prevent a severe case of COVID-19.Funding Instituto de Salud Carlos III.
People have some ability to adapt to their local climate type, but both cold and hot temperatures are still associated with increased risk of mortality. Public health strategies to alleviate the impact of ambient temperatures are important, in particular in the context of climate change.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.