The volume of scrap tyres, an undesired urban waste, is increasing rapidly in every country. Mixing sand and rubber particles as a lightweight backfill is one of the possible alternatives to avoid stockpiling them in the environment. This paper presents a minimal model aiming to shed light on the relevant physical parameters governing the evolution of the void ratio of sandrubber mixtures undergoing an isotropic compression loading, where the mixtures consist of various volume ratios of rubber. It is based on the idea that, when pressure is applied, the rubber particles deform and partially fill the porous space of the system, leading to a decrease of the void ratio with increasing pressure. We show that our simple approach is capable of reproducing experimental data obtained with sand and rubber of similar particle size distributions up to mixtures composed of 50% of rubber. The effect of the particle shape and size on the model parameters is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.