Major depressive disorder (MDD) affects around 15% of the population at some stage in their lifetime. It can be gravely disabling and it is associated with increased risk of suicide. Genetics play an important role; however, there are additional environmental contributions to the pathogenesis. A number of possible risk genes that increase liability for developing symptoms of MDD have been identified in genome-wide association studies (GWAS). The goal of this study was to characterize the MDD risk genes with respect to the degree of evolutionary conservation in simpler model organisms such as Caenorhabditis elegans and zebrafish, the phenotypes associated with variation in these genes and the extent of network connectivity. The MDD risk genes showed higher conservation in C. elegans and zebrafish than genome-to-genome comparisons. In addition, there were recurring themes among the phenotypes associated with variation of these risk genes in C. elegans. The phenotype analysis revealed enrichment for essential genes with pleiotropic effects. Moreover, the MDD risk genes participated in more interactions with each other than did randomly-selected genes from similar-sized gene sets. Syntenic blocks of risk genes with common functional activities were also identified. By characterizing evolutionarily-conserved counterparts to the MDD risk genes, we have gained new insights into pathogenetic processes relevant to the emergence of depressive symptoms in man.
Suicide is a devastating outcome of unresolved issues that affect mental health, general wellbeing and socioeconomic stress. The biology of suicidal behavior is still poorly understood, although progress has been made. Suicidal behavior runs in families and genetic studies have provided initial glimpses into potential genes that contribute to suicide risk. Here, we attempt to unify the biology and behavioral dimensions into a model that can guide research in this area. The proposed model envisions suicidal behavior as a catalytic reaction that may result in suicide depending on the conditions, analogously to enzyme catalysis of chemical reactions. A wide array of substrates or reactants, such as hopelessness, depression, debilitating illnesses and diminished motivation can mobilize suicidal thoughts and behaviors (STBs), which can then catalyze the final step/act of suicide. Here, we focus on three biological substrates in particular: threat assessment, motivation to engage in life and impulsivity. Genetic risk factors can affect each of these processes and tilt the balance toward suicidal behavior when existential crises (real or perceived) emerge such as loss of a loved one, sudden changes in social status or serious health issues. Although suicide is a uniquely human behavior, many of the fundamental biological processes are evolutionarily conserved. Insights from animal models may help to shape our understanding of suicidal behavior in man. By examining counterparts of the major biological processes in other organisms, new ideas about the role of genetic risk factors may emerge along with possible therapeutic interventions or preventive measures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.