The myosin super-relaxed state (SRX) in skeletal muscle is hypothesized to play an important role in regulating muscle contractility and thermogenesis in humans, but has only been examined in model organisms. Here we report the first human skeletal muscle SRX measurements, using quantitative epifluorescence microscopy of fluorescent 2'/3'-O-(N-methylanthraniloyl) ATP (mantATP) single-nucleotide turnover. Myosin heavy chain (MHC) isoform expression was determined using gel electrophoresis for each permeabilized vastus lateralis fiber, to allow for novel comparisons of SRX between fiber-types. We find that the fraction of myosin in SRX is less in MHC IIA fibers than in MHC I and IIAX fibers (p = 0.008). ATP turnover of SRX is faster in MHC IIAX fibers compared to MHC I and IIA fibers (p = 0.001). We conclude that SRX biochemistry is measurable in human skeletal muscle, and our data indicate that SRX depends on fiber type as classified by MHC isoform. Extension from this preliminary work would provide further understanding regarding the role of SRX in human muscle physiology.
The myosin super-relaxed state (SRX) in skeletal muscle is hypothesized to play an important role in regulating muscle contractility and thermogenesis in humans, but has only been examined in model organisms. Here we report the first human skeletal muscle SRX measurements, using quantitative epifluorescence microscopy of fluorescent 2’/3’-O-(N-methylanthraniloyl) ATP (mantATP) single-nucleotide turnover. Myosin heavy chain (MHC) isoform expression was determined using gel electrophoresis for each permeabilized vastus lateralis fiber, to allow for novel comparisons of SRX between fiber-types. We find that the fraction of myosin in SRX is less in MHC IIA fibers than in MHC I and IIAX fibers (p = 0.008). ATP turnover of SRX is faster in MHC IIAX fibers compared to MHC I and IIA fibers (p = 0.001). We conclude that SRX biochemistry is measurable in human skeletal muscle, and our data indicate that SRX depends on fiber type as classified by MHC isoform. Extension from this preliminary work would provide further understanding regarding the role of SRX in human muscle physiology.
We performed electron paramagnetic resonance (EPR) on the myosin head (S1), labeling the regulatory light chain (RLC) with a bifunctional spin label (BSL). To achieve stereoselective site-directed labeling with BSL, we engineered a pair of cysteines (i, iþ4) in RLC. By exchanging BSL-labeled RLC onto S1 and decorating oriented muscle fibers with BSL-RLC-S1, we obtained
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.