Introduction: Skin exposure to ultraviolet radiation (UVR) can cause oxidative stress, particularly in the absence of adequate protective measures or in individuals with a sensitive skin type. Most commonly, protection from UVR entails the use of topical sunscreens. Sunscreens, however, have various limitations. The objective of this study was to evaluate the efficacy and tolerability of an oral food supplement containing a combination of actives with mainly antioxidative properties (vitamins A, C, D3, E, selenium, lycopene, lutein, as well as green tea, polypodium and grape extracts) in the context of photoprotection.
BackgroundWith age, decreasing dermal levels of proteoglycans, collagen, and elastin lead to the appearance of aged skin. Oxidation, largely driven by environmental factors, plays a central role.AimThe aim of this study was to assess the antiaging efficacy of a topical serum containing L-Ascorbic acid, soluble proteoglycans, low molecular weight hyaluronic acid, and a tripeptide in ex vivo and in vivo clinical studies.MethodsPhotoaging and photo-oxidative damage were induced in human skin explants by artificial solar radiation. Markers of oxidative stress – reactive oxygen species (ROS), total glutathione (GSH), and cyclobutane pyrimidine dimers (CPDs) – were measured in serum-treated explants and untreated controls. Chronological aging was simulated using hydrocortisone. In both ex vivo studies, collagen, elastin, and proteoglycans were determined as measures of dermal matrix degradation. In women aged 21–67 years, hydration was measured up to 24 hours after a single application of serum, using Corneometer and hygrometer. Subjects’ perceptions of efficacy and acceptability were assessed via questionnaire after once-daily serum application for 4 weeks. Studies were performed under the supervision of a dermatologist.ResultsIn the photoaging study, irradiation induced changes in ROS, CPD, GSH, collagen, and elastin levels; these changes were reversed by topical serum application. The serum also protected against hydrocortisone-induced reduction in collagen, elastin, and proteoglycan levels, which were significantly higher in the serum-treated group vs untreated hydrocortisone-control explants. In clinical studies, serum application significantly increased skin moisture for 6 hours. Healthy volunteers perceived the product as efficient in making the skin brighter, more hydrated, and decreasing wrinkles and wished to continue using it. The serum was well tolerated and noncomedogenic.ConclusionThe serum protected against oxidative damage and dermal protein loss caused by photo- and chronological aging in human skin explants. In-vivo, the serum hydrated skin for 6 hours, and users perceived increased skin brightness, hydration, and fewer wrinkles.
Actinic keratosis (AK) is a common pathology that afflicts sun-exposed areas of the skin. It predominantly affects older and fair-skinned individuals suggesting an accumulative damage attributable to chronic sun exposure. The prevalence of AK has risen in the past decades and is expected to continue to rise. Apart from visible hyperkeratotic, hyperplastic lesions, AK is also associated with the presence of subclinical lesions adjacent to tumor tissue, which has led to the use of the concept “cancerization field”. Although lesion- and field-targeting treatments are currently available, many are associated with local side effects and recurrence of new lesions. This review provides information on AK pathophysiology and treatment options and summarizes the available clinical evidence supporting the use of Eryfotona AK-NMSC, a film-forming medical device with SPF 100+ containing the DNA repair enzyme photolyase, for managing AK, based on the analysis of the results of 228 patients treated with the product. Funding ISDIN funded the Article Processing Charges. Electronic supplementary material The online version of this article (10.1007/s13555-019-0294-1) contains supplementary material, which is available to authorized users.
BackgroundSkin aging is accelerated by multiple extrinsic factors: ultraviolet radiation, smoking and pollution increase oxidative activity, damaging cellular and extracellular components such as DNA, proteins, and lipids. With age, collagen and hyaluronic acid levels decline, resulting in loss of elasticity and moisture of the skin. Over time this damage leads to characteristic signs that make the skin look older: altered facial contour, sagging skin, wrinkles, and an uneven complexion. This study evaluated the anti-aging effects of a new facial cream formulated with carnosine, Alteromonas ferment extract, crosspolymer hyaluronic acid, and a tripeptide.MethodsAn open-label intra-individual study to assess the anti-aging efficacy of the investigational product in 33 women aged 45 to 65 years. The product was applied twice daily for 56 days. Facial contour and skin deformation, elasticity, hydration, and complexion were measured with specialized equipment at baseline and days 28 and 56. Additionally, subjects completed questionnaires at days 28 and 56 on the perceived efficacy and cosmetic characteristics of the product.ResultsAfter 56 days of use of the investigational product, a redefining effect was observed, with a significant decrease in sagging jawline (7%). Skin was significantly more hydrated (12%), firmer (29%), and more elastic (20%) (P<0.001 for all). On complexion assessment, skin texture (a measure of skin smoothness) and spots (brown and red skin lesions) also improved significantly (12% and 6% decrease, respectively). In the subjective self-evaluation, the majority of subjects reported that the skin was visibly tightened and more elastic, flexible, and moisturized (91%, 88%, 91%, and 90%, respectively). The product was well tolerated with no adverse events reported during the study.ConclusionThis new cosmetic product demonstrated anti-aging effects after 56 days of use, most notably a redefined facial contour and improved complexion. It is a safe and effective anti-aging product.
Introduction Seborrheic dermatitis (SEBD) is a chronic, recurrent skin disorder that typically occurs as an inflammatory response to fungi of the genus Malassezia . The development of an ex vivo model that mimics the fungal proliferation and skin inflammation of SEBD would play an important role in screening formulations for their efficacy in treating SEBD. Methods An ex vivo model for SEBD using human skin explants that had been mechanically manipulated to facilitate colonization of Malassezia furfur was developed. This model was used to evaluate the efficacy of a novel non-steroidal facial cream (NSFC) in inhibiting M. furfur proliferation and reducing inflammatory cytokine levels. Results This model reproduced some of the key pathological features of SEBD, including M. furfur proliferation and inflammatory cytokine production. Topical application of NSFC facial cream reduced M. furfur counts by 92% ( p < 0.05) and levels of interleukin 8 (IL-8) and tumor necrosis factor alpha (TNF-α) by 82% and 40%, respectively ( p < 0.05, both). Conclusion The proposed ex vivo model for SEBD could be a useful tool to evaluate topical antifungal treatments. The novel NSFC tested in this study reduced M. furfur proliferation and inflammatory cytokine levels following topical application and may be helpful in the management of SEBD. Funding ISDIN. Electronic supplementary material The online version of this article (10.1007/s13555-019-0311-4) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.