The liver is the most common metastatic site in colorectal cancer (CRC) patients. Indeed, 25–30% of the cases develop colorectal liver metastasis (CLM), showing an extremely poor 5-year survival rate and resistance to conventional anticancer therapies. Tumor-associated macrophages (TAMs) provide a nurturing microenvironment for CRC metastasis, promoting epithelial-to-mesenchymal transition (EMT) through the TGF-β signaling pathway, thus driving tumor cells to acquire mesenchymal properties that allow them to migrate from the primary tumor and invade the new metastatic site. EMT is known to contribute to the disruption of blood vessel integrity and the generation of circulating tumor cells (CTCs), thus being closely related to high metastatic potential in numerous solid cancers. Despite the fact that it is well-recognized that the crosstalk between tumor cells and the inflammatory microenvironment is crucial in the EMT process, the association between the EMT and the role of TAMs is still poorly understood. In this review, we elaborated on the role that TAMs exert in the induction of EMT during CLM development. Since TAMs are the major source of TGF-β in the liver, we also focused on novel insights into their role in TGF-β-induced EMT.
HCC, the most prevalent form of primary liver cancer, is prototypically an inflammation-driven cancer developing after years of inflammatory insults. Consequently, the hepatic microenvironment is a site of complex immunological activities. Moreover, the tolerogenic nature of the liver can act as a barrier to anti-tumor immunity, fostering cancer progression and resistance to immunotherapies based on immune checkpoint inhibitors (ICB). In addition to being a site of primary carcinogenesis, many cancer types have high tropism for the liver, and patients diagnosed with liver metastasis have a dismal prognosis. Therefore, understanding the immunological networks characterizing the tumor microenvironment (TME) of HCC will deepen our understanding of liver immunity, and it will underpin the dominant mechanisms controlling both spontaneous and therapy-induced anti-tumor immune responses. Herein, we discuss the contributions of the cellular and molecular components of the liver immune contexture during HCC onset and progression by underscoring how the balance between antagonistic immune responses can recast the properties of the TME and the response to ICB.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.