Flavobacterium psychrophilum is a psychrotrophic fish-pathogenic bacterium that causes cold water disease (CWD) in salmonids. By means of Tn4351 mutagenesis a mutant named FP1033, deficient in growth on iron-depleted medium, was previously isolated. FP1033 recovered the parental phenotype in the presence of iron. The gene disrupted by the transposon in this mutant encoded a protein with similarity to ExbD proteins, which are members of the TonB complex system involved in iron uptake mediated by siderophores. Analysis of the DNA surrounding the transposon insertion showed the presence of a tonB cluster of genes composed of exbB, two exbD (exbD1 and exbD2) and tonB loci. RT-PCR analysis and complementation studies indicated that these genes are transcribed as an operon and that the exbD2 : : Tn4351 phenotype was caused by the lack of ExbD2. FP1033 showed decreased virulence and conferred a high level of protection in rainbow trout fry after vaccination. This is believed to be the first report of a F. psychrophilum attenuated strain that induces a protective immune response in rainbow trout against CWD. These results suggest that the exbD2 locus from this particular TonB system is a suitable target to generate a live attenuated vaccine.
Yersinia ruckeri, the etiological agent of the enteric red mouth disease (ERM) of salmonids, produces Yrp1, a serralysin metalloprotease involved in pathogenesis. We describe here the hydrolytic and immunogenic properties of Yrp1. The protease was able to hydrolyze different matrix and muscle proteins as laminin, fibrinogen, gelatine, actin, and myosin but not type II and IV collagens. In addition, the Yrp1 protein, when inactivated by heat and used as an immunogen, was able to elicit a strong protection against the development of ERM. The analysis of different Y. ruckeri strains with (Azo ؉ ) or without (Azo ؊ ) Yrp1 activity showed that all of them contained the yrp1 operon. By using yrp1::lacZ operon fusions, protease production analysis, and complementation studies, it was possible to show that an Azo ؊ strain was blocked at the transcription level. The transcriptional study of the yrp1 operon under different environmental conditions showed that it was regulated by osmolarity and temperature, without pH influence. Finally, when -galactosidase activity was used as a probe in vivo, the progression of the disease in the fish could be visualized, and the tropism of the bacterium and affected organs could be defined. This system opens a vast field of study not only with regard to fish disease progression but also in pathogen interactions, temporal gene expression, carrier stages, antibiotic resistance selection, etc.
Nucleotide sequence analysis of the region surrounding the pIVET8 insertion site in Yersinia ruckeri 150RiviXII, previously selected by in vivo expression technology (IVET), revealed the presence of eight genes (traHIJKCLMN [hereafter referred to collectively as the tra operon or tra cluster]), which are similar both in sequence and organization to the tra operon cluster found in the virulence-related plasmid pADAP from Serratia entomophila. Interestingly, the tra cluster of Y. ruckeri is chromosomally encoded, and no similar tra cluster has been identified yet in the genomic analysis of human pathogenic yersiniae. A traI insertional mutant was obtained by homologous recombination. Coinfection experiments with the mutant and the parental strain, as well as 50% lethal dose determinations, indicate that this operon is involved in the virulence of this bacterium. All of these results suggest the implication of the tra cluster in a virulence-related type IV secretion/transfer system. Reverse transcriptase PCR studies showed that this cluster is transcribed as an operon from a putative promoter located upstream of traH and that the mutation of traI had a polar effect. A traI::lacZY transcriptional fusion displayed higher expression levels at 18°C, the temperature of occurrence of the disease, and under nutrient-limiting conditions. PCR detection analysis indicated that the tra cluster is present in 15 Y. ruckeri strains from different origins and with different plasmid profiles. The results obtained in the present study support the conclusion, already suggested by different authors, that Y. ruckeri is a very homogeneous species that is quite different from the other members of the genus Yersinia.
Lactococcus garvieae is considered an emergent pathogen in aquaculture and it is also associated with mastitis in domestic animals as well as human endocarditis and septicaemia. In spite of this, the pathogenic mechanisms of this bacterium are poorly understood. Signature-tagged mutagenesis was used to identify virulence factors and to establish the basis of pathogen-host interactions. A library of 1250 L. garvieae UNIUD074-tagged Tn917 mutants in 25 pools was screened for the ability to grow in fish. Among them, 29 mutants (approx. 2.4 %) were identified which could not be recovered from rainbow trout following infection. Sequence analysis of the tagged Tn917-interrupted genes in these mutants indicated the participation in pathogenesis of the transcriptional regulatory proteins homologous to GidA and MerR; the metabolic enzymes asparagine synthetase A and a-acetolactate synthase; the ABC transport system of glutamine and a calcium-transporting ATPase; the dltA locus involved in alanylation of teichoic acids; and hypothetical proteins containing EAL and Eis domains, among others.Competence index experiments in several of the selected mutants confirmed the relevance of the Tn917-interrupted genes in the development of the infection process. The results suggested some of the metabolic routes and enzymic systems necessary for the complete virulence of this bacterium. This work is believed to represent the first report of a genome-wide scan for virulence factors in L. garvieae. The identified genes will further our understanding of the pathogenesis of L. garvieae infections and may provide targets for intervention or lead to the development of novel therapies. INTRODUCTIONLactococcus garvieae is the aetiological agent of lactococcosis, an emergent disease, which affects cultured freshwater and marine fish with special incidence in rainbow trout (Onchorhynchus mykiss) (Eldar et al., 1999a) and yellowtail (Seriola quinqueradiata) (Kusuda & Kawai, 1998), particularly during the summer given its association with high water temperatures (for a review see Vendrell et al., 2006). In addition, L. garvieae has been isolated from buffalos with mastitis (Teixeira et al., 1996), from clinical specimens of human blood and urine (Elliott et al., 1991) and from patients with bacterial endocarditis and different tissue infections (Aguirre & Collins, 1993;Fefer et al., 1998;James et al., 2000;Mofredj et al., 2000;Fihman et al., 2006;Vinh et al., 2006;Yiu et al., 2007).In fish farming, outbreaks are treated with antibiotics, although they are often ineffective and do not prevent reinfection. On the other hand, vaccination with inactivated whole cells by intraperitoneal injection is only protective for a limited period of time (Ravelo et al., 2005). In recent years, progress has been made in diagnostic techniques (Endo et al., 1998;Zlotkin et al., 1998;Goh et al., 2000;Wilson & Carson, 2003), strain typing (Eldar et al., 1999b;Vela et al., 2000;Wilson et al., 2002; Ravelo et al., 2003;Barnes & Ellis, 2004;Eyngor et al., 2004;Kawani...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.