Cells rely on surveillance systems such as autophagy to handle protein alterations and organelle damage. Dysfunctional autophagy, an evolutionarily conserved cellular mechanism for degradation of intracellular components in lysosomes, frequently leads to neurodegeneration. The neuroprotective effect of autophagy stems from its ability to eliminate pathogenic forms of proteins such as α-synuclein or tau. However, the same pathogenic proteins often affect different types and steps of the autophagic process. Furthermore, genetic studies have shown that some proteins related to neurodegeneration, such as huntingtin, participate in autophagy as one of their physiological functions. This complex interplay between autophagy and neurodegeneration suggests that targeting autophagy as a whole might have limited applicability in neurodegenerative diseases, and that future efforts should focus instead on targeting specific types and steps of the autophagic process. This change of strategy in the modulation of autophagy might hold promise for future disease-modifying therapies for patients with neurodegenerative disorders.
Via whole-exome sequencing, we identified rare autosomal-recessive variants in UBA5 in five children from four unrelated families affected with a similar pattern of severe intellectual deficiency, microcephaly, movement disorders, and/or early-onset intractable epilepsy. UBA5 encodes the E1-activating enzyme of ubiquitin-fold modifier 1 (UFM1), a recently identified ubiquitin-like protein. Biochemical studies of mutant UBA5 proteins and studies in fibroblasts from affected individuals revealed that UBA5 mutations impair the process of ufmylation, resulting in an abnormal endoplasmic reticulum structure. In Caenorhabditis elegans, knockout of uba-5 and of human orthologous genes in the UFM1 cascade alter cholinergic, but not glutamatergic, neurotransmission. In addition, uba5 silencing in zebrafish decreased motility while inducing abnormal movements suggestive of seizures. These clinical, biochemical, and experimental findings support our finding of UBA5 mutations as a pathophysiological cause for early-onset encephalopathies due to abnormal protein ufmylation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.