Resumen. Este artículo muestra los resultados del seguimiento y análisis de 210 pacientes que ingresaron a la Unidad de Cuidados Post-anestésicos del Centenario Hospital Miguel Hidalgo de Abril a Septiembre de 2014 en la ciudad de Aguascalientes. La herramienta empleada para la identificación de los factores predisponentes de relajación residual neuromuscular fue un algoritmo genético hibridizado con los conceptos de testor y testor típico, así como la integración de operadores genéticos que permiten la generación y mejora de individuos prometedores durante el proceso. La relajación residual neuromuscular es la condición clínica determinada por la persistencia de los efectos farmacológicos de los bloqueantes neuromusculares; situación que debe ser evitada debido a que condiciona el aumento de la morbimortalidad del paciente. Los resultados sugieren como factores predisponentes de relajación muscular residual, variables como el género y la duración de los procedimientos (que no han sido reportadas en la literatura), entre otras.Palabras clave: algoritmo genético, testores típicos, relajación residual neuromuscular, factores predisponentes.
One of the tasks of pattern recognition is the selection of subsets of characteristics (SSC), which makes it possible to identify characteristics that provide relevant information. There are different approaches to apply SSC being the logical-combinatory approach through the theory of testers, a widely used tool. A testor is a subset of characteristics capable of distinguishing objects of different classes. Testers in their minimal expression are known as typical testers (TT). Finding them allows distinguishing relevant variables from redundant or irrelevant ones, so that data analysis models become simpler and more understandable, improving their performance and decreasing computational requirements.
This chapter presents the implementation of a Genetic Algorithm into a framework for machine learning that deals with the problem of identifying the factors that impact the health state of newborns in Mexico. Experimental results show a percentage of correct clustering for unsupervised learning of 89%, a real life training matrix of 46 variables, was reduced to only 25 that represent 54% of its original size. Moreover execution time is about one and a half minutes. Each risk factor (of neonatal health) found by the algorithm was validated by medical experts. The contribution to the medical field is invaluable, since the cost of monitoring these features is minimal and it can reduce neonatal mortality in our country.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.