Background Data on the prevalence of bacterial and viral co-infections among patients admitted to the ICU for acute respiratory failure related to SARS-CoV-2 pneumonia are lacking. We aimed to assess the rate of bacterial and viral co-infections, as well as to report the most common micro-organisms involved in patients admitted to the ICU for severe SARS-CoV-2 pneumonia. Patients and methods In this monocenter retrospective study, we reviewed all the respiratory microbiological investigations performed within the first 48 h of ICU admission of COVID-19 patients (RT-PCR positive for SARS-CoV-2) admitted for acute respiratory failure. Results From March 13th to April 16th 2020, a total of 92 adult patients (median age: 61 years, 1st–3rd quartiles [55–70]; males: n = 73/92, 79%; baseline SOFA: 4 [3–7] and SAPS II: 31 [21–40]; invasive mechanical ventilation: n = 83/92, 90%; ICU mortality: n = 45/92, 49%) were admitted to our 40-bed ICU for acute respiratory failure due to SARS-CoV-2 pneumonia. Among them, 26 (28%) were considered as co-infected with a pathogenic bacterium at ICU admission with no co-infection related to atypical bacteria or viruses. The distribution of the 32 bacteria isolated from culture and/or respiratory PCRs was as follows: methicillin-sensitive Staphylococcus aureus (n = 10/32, 31%), Haemophilus influenzae (n = 7/32, 22%), Streptococcus pneumoniae (n = 6/32, 19%), Enterobacteriaceae (n = 5/32, 16%), Pseudomonas aeruginosa (n = 2/32, 6%), Moraxella catarrhalis (n = 1/32, 3%) and Acinetobacter baumannii (n = 1/32, 3%). Among the 24 pathogenic bacteria isolated from culture, 2 (8%) and 5 (21%) were resistant to 3rd generation cephalosporin and to amoxicillin–clavulanate combination, respectively. Conclusions We report on a 28% rate of bacterial co-infection at ICU admission of patients with severe SARSCoV-2 pneumonia, mostly related to Staphylococcus aureus, Haemophilus influenzae, Streptococcus pneumoniae and Enterobacteriaceae. In French patients with confirmed severe SARSCoV-2 pneumonia requiring ICU admission, our results encourage the systematic administration of an empiric antibiotic monotherapy with a 3rd generation cephalosporin, with a prompt de-escalation as soon as possible. Further larger studies are needed to assess the real prevalence and the predictors of co-infection together with its prognostic impact on critically ill patients with severe SARS-CoV-2 pneumonia.
To increase the knowledge about S. capitis in the neonatal setting, we conducted a nationwide 3-month survey in 38 neonatal intensive care units (NICUs) covering 56.6% of French NICU beds. We demonstrated 14.2% of S. capitis BSI (S.capBSI) among nosocomial BSIs. S.capBSI incidence rate was 0.59 per 1000 patient-days. A total of 55.0% of the S.capBSIs were late onset catheter-related BSIs. The S. capitis strains infected preterm babies (median gestational age 26 weeks, median birth weight 855 g). They were resistant to methicillin and aminoglycosides and belonged to the NRCS-A clone. Evolution was favorable in all but one case, following vancomycin treatment.
Background Aminoglycosides have a concentration-dependent therapeutic effect when peak serum concentration (Cmax) reaches eight to tenfold the minimal inhibitory concentration (MIC). With an amikacin MIC of 8 mg/L, the Cmax should be 64–80 mg/L. This objective is based on clinical breakpoints and not on measured MIC. This study aimed to assess the proportion of patients achieving the pharmacokinetic/pharmacodynamic (PK/PD) target Cmax/MIC ≥ 8 using the measured MIC in critically ill patients treated for documented Gram-negative bacilli (GNB) infections. Methods Retrospective analysis from February 2016 to December 2017 of a prospective database conducted in 2 intensive care units (ICU). All patients with documented severe GNB infections treated with amikacin (single daily dose of 25 mg/kg of total body weight (TBW)) with both MIC and Cmax measurements at first day of treatment (D1) were included. Results are expressed in n (%) or median [min–max]. Results 93 patients with 98 GNB-documented infections were included. The median Cmax was 55.2 mg/L [12.2–165.7] and the median MIC was 2 mg/L [0.19–16]. Cmax/MIC ratio ≥ 8 was achieved in 87 patients (88.8%) while a Cmax ≥ 64 mg/L was achieved in only 38 patients (38.7%). Overall probability of PK/PD target attainment was 93%. No correlation was found between Cmax/MIC ratio and clinical outcome at D8 and D28. Conclusion According to PK/PD parameters observed in our study, single daily dose of amikacin 25 mg/kg of TBW appears to be sufficient in most critically ill patients treated for severe GNB infections.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.