Fruit production has to be adapted to climate change that is often associated with heat and water deficit episodes. To develop efficient strategies on how to manage commercial orchards under deficit water supply, we need to know the effects of water-stress on crop production. However, when the water supply is abundant apple growers often think that over-irrigation gives higher marketable fruit yield than potential evapotranspiration-based or sensor-based (e.g. tensiometer, dendrometer) irrigation. We therefore aimed to evaluate the effects of three water regimes, namely well-watered (100% of crop evapotranspiration -ETc, WW), 25% of ETc water deficit over the season (water-stressed, WS), and twofold of WW (200% of ETc, 2xWW), on midday stem water potential (SWP), crop yield and fruit quality of Pink Lady TM 'Rosy Glow' apples. As expected, SWP was lower in WS than in the others, but both WS and 2xWW decreased fruit yield, although 2xWW tended to increase yield in the >70% color class and ensured quite a constant amount of yield at each picking time. Soluble solid content (SSC) in fruit was higher in WS. As a whole, our results suggest that over-irrigation that is sometimes recommended to keep a safety margin should be considered with caution. Rather, a mild water-stress, between WS and WW in our experiment, may represent a good compromise for a good quality yield.
Fruit production should be adapted to future scenarios that are frequently associated with scarce resources, especially freshwater and fertilizers. New biologically-based fruit production strategies, i.e. taking into account tree growth and water status, are required to optimize irrigation and fertilization under abiotic stress conditions. It was hypothesized that a moderate abiotic stress, here deficit irrigation with or without nitrogen deficit, in the preharvest period, could decrease postharvest losses due to diseases and pruning weights due to reduced vegetative growth, without sacrificing the yield and fruit quality. This study was conducted over two years using the same trees of ‘Moncante’ nectarine cultivar grown in a commercial orchard. Trees were assigned to three treatments: (1) full irrigation at 80% estimated crop evapotranspiration (ETc), (2) deficit irrigation, i.e. at 75% of full irrigation, and (3) deficit irrigation and deficit nitrogen, i.e. at 75% of full irrigation and 75% of usual N-fertilization adopted by the grower in this commercial orchard. Deficit irrigation alone and in combination with deficit nitrogen reduced postharvest diseases and pruning weights without significant yield losses. Our results suggest that ETc-based approaches of reduced water irrigation may be a sustainable way to decrease phytosanitary inputs and workload in the orchard while maintaining the orchard performance.
Peach orchards are intensively sprayed crops, and alternative methods must be found to replace pesticides. We intend here to evaluate if limiting water and nitrogen (N) supply could be effective in controlling aphid infestation in commercial orchards. N and water supply were therefore either unrestricted or restricted by 30% only for water, or for both water and N, in 2018 and 2019 on trees of two contrasting varieties. Natural infestations (green peach aphid, mealy plum aphid, leaf curl aphid) were monitored regularly at tree and shoot level. Infested and control shoots were compared for their development during the infestation period, their apex concentrations of total N, amino acids, non-structural carbohydrates, and polyphenols at infestation peak. At tree level, limiting both water and N supplies decreased the proportion of infested shoots by 30%, and the number of trees hosting the most harmful specie by 20 to 50%. Limiting only N supplies had almost no effect on infestation severity. At shoot level, the apex N concentration of infested shoots was stable (around 3.2% dry weight) and was found to be independent of treatment, variety, and year. The remaining biochemical variables were not affected by infestation status but by variety and year. Shoot development was only slightly affected by treatment. Aphids colonized the most vigorous shoots, being those with longer apical ramifications in 2018 and higher growth rates in 2019, in comparison with the controls. The differences were, respectively, 40 and 55%. It was concluded that a double restriction in water and N could limit, but not control, aphid infestations in commercial orchards.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.