During 2000–2013, 4 genotypes of bluetongue virus (BTV) were detected in Corsica, France. At the end of 2013, a compulsory BTV-1 vaccination campaign was initiated among domestic ruminants; biological samples from goats were tested as part of a corresponding monitoring program. A BTV strain with nucleotide sequences suggestive of a novel serotype was detected.
At the end of August 2015, a ram located in central France (department of Allier) showed clinical signs suggestive of BTV (Bluetongue virus) infection. However, none of the other animals located in the herd showed any signs of the Bluetongue disease. Laboratory analyses identified the virus as BTV serotype 8. The viro and sero prevalence intraherd were 2.4% and 8.6% in sheep and 18.3% and 42.9% in cattle, respectively. Phylogenetic studies showed that the sequences of this strain are closely related to another BTV-8 strain that has circulated in France in 2006-2008. The origin of the outbreak is unclear but it may be assumed that the BTV-8 has probably circulated at very low prevalence (possibly in livestock or wildlife) since its first emergence in 2007-2008.
Schmallenberg virus (SBV) was discovered in Germany in late 2011 and then spread rapidly to many European countries. SBV is an orthobunyavirus that causes abortion and congenital abnormalities in ruminants. A virus-encoded nonstructural protein, termed NSs, is a major virulence factor of SBV, and it is known to promote the degradation of Rpb1, a subunit of the RNA polymerase II (Pol II) complex, and therefore hampers global cellular transcription. In this study, we found that NSs is mainly localized in the nucleus of infected cells and specifically appears to target the nucleolus through a nucleolar localization signal (NoLS) localized between residues 33 and 51 of the protein. NSs colocalizes with nucleolar markers such as B23 (nucleophosmin) and fibrillarin. We observed that in SBV-infected cells, B23 undergoes a nucleolus-to-nucleoplasm redistribution, evocative of virus-induced nucleolar disruption. In contrast, the nucleolar pattern of B23 was unchanged upon infection with an SBV recombinant mutant with NSs lacking the NoLS motif (SBVΔNoLS). Interestingly, unlike wild-type SBV, the inhibitory activity of SBVΔNoLS toward RNA Pol II transcription is impaired. Overall, our results suggest that a putative link exists between NSs-induced nucleolar disruption and its inhibitory function on cellular transcription, which consequently precludes the cellular antiviral response and/or induces cell death.IMPORTANCE Schmallenberg virus (SBV) is an emerging arbovirus of ruminants that spread in Europe between 2011 and 2013. SBV induces fetal abnormalities during gestation, with the central nervous system being one of the most affected organs. The virus-encoded NSs protein acts as a virulence factor by impairing host cell transcription. Here, we show that NSs contains a nucleolar localization signal (NoLS) and induces disorganization of the nucleolus. The NoLS motif in the SBV NSs is absolutely necessary for virus-induced inhibition of cellular transcription. To our knowledge, this is the first report of nucleolar functions for NSs within the Bunyaviridae family.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.