SummaryX chromosome inactivation involves multiple levels of chromatin modification, established progressively and in a stepwise manner during early development. The chromosomal protein Smchd1 was recently shown to play an important role in DNA methylation of CpG islands (CGIs), a late step in the X inactivation pathway that is required for long-term maintenance of gene silencing. Here we show that inactive X chromosome (Xi) CGI methylation can occur via either Smchd1-dependent or -independent pathways. Smchd1-dependent CGI methylation, the primary pathway, is acquired gradually over an extended period, whereas Smchd1-independent CGI methylation occurs rapidly after the onset of X inactivation. The de novo methyltransferase Dnmt3b is required for methylation of both classes of CGI, whereas Dnmt3a and Dnmt3L are dispensable. Xi CGIs methylated by these distinct pathways differ with respect to their sequence characteristics and immediate chromosomal environment. We discuss the implications of these results for understanding CGI methylation during development.
LSH, a member of the SNF2 family of chromatin remodeling ATPases encoded by the Hells gene, is essential for normal levels of DNA methylation in the mammalian genome. While the role of LSH in the methylation of repetitive DNA sequences is well characterized, its contribution to the regulation of DNA methylation and the expression of proteincoding genes has not been studied in detail. In this report we investigate genome-wide patterns of DNA methylation at gene promoters in Hells -/-mouse embryonic fibroblasts (MEFs). We find that in the absence of LSH, DNA methylation is lost or significantly reduced at~20% of all normally methylated promoter sequences. As a consequence, a large number of genes are misexpressed in Hells -/-MEFs. Comparison of Hells -/-MEFs with wild-type MEFs and embryonic stem (ES) cells suggests that LSH is important for de novo DNA methylation events that accompany the establishment and differentiation of embryonic lineage cells. We further show that the generation of normal DNA methylation patterns and stable gene silencing at specific promoters require cooperation between LSH and the G9a/GLP complex of histone methylases. At such loci, G9a recruitment is compromised when LSH is absent or greatly reduced. Taken together, our data suggest a mechanism whereby LSH promotes binding of DNA methyltransferases and the G9a/GLP complex to specific loci and facilitates developmentally programmed DNA methylation and stable gene silencing during lineage commitment and differentiation.
SummaryDNA methylation at imprinting control regions (ICRs) is established in gametes in a sex-specific manner and has to be stably maintained during development and in somatic cells to ensure the correct monoallelic expression of imprinted genes. In addition to DNA methylation, the ICRs are marked by allele-specific histone modifications. Whether these marks are essential for maintenance of genomic imprinting is largely unclear. Here, we show that the histone H3 lysine 9 methylases G9a and GLP are required for stable maintenance of imprinted DNA methylation in embryonic stem cells; however, their catalytic activity and the G9a/GLP-dependent H3K9me2 mark are completely dispensable for imprinting maintenance despite the genome-wide loss of non-imprinted DNA methylation in H3K9me2-depleted cells. We provide additional evidence that the G9a/GLP complex protects imprinted DNA methylation by recruitment of de novo DNA methyltransferases, which antagonize TET dioxygenass-dependent erosion of DNA methylation at ICRs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.