We used massively parallel pyrosequencing to discover and characterize microRNAs (miRNAs) expressed in human embryonic stem cells (hESC). Sequencing of small RNA cDNA libraries derived from undifferentiated hESC and from isogenic differentiating cultures yielded a total of 425,505 highquality sequence reads. A custom data analysis pipeline delineated expression profiles for 191 previously annotated miRNAs, 13 novel miRNAs, and 56 candidate miRNAs. Further characterization of a subset of the novel miRNAs in Dicer-knockdown hESC demonstrated Dicer-dependent expression, providing additional validation of our results. A set of 14 miRNAs (9 known and 5 novel) was noted to be expressed in undifferentiated hESC and then strongly downregulated with differentiation. Functional annotation analysis of predicted targets of these miRNAs and comparison with a null model using non-hESC-expressed miRNAs identified statistically enriched functional categories, including chromatin remodeling and lineage-specific differentiation annotations. Finally, integration of our data with genomewide chromatin immunoprecipitation data on OCT4, SOX2, and NANOG binding sites implicates these transcription factors in the regulation of nine of the novel/candidate miRNAs identified here. Comparison of our results with those of recent deep sequencing studies in mouse and human ESC shows that most of the novel/candidate miRNAs found here were not identified in the other studies. The data indicate that hESC express a larger complement of miRNAs than previously appreciated, and they provide a resource for additional studies of miRNA regulation of hESC physiology.
Canine embryonic stem (cES) cell lines were generated to establish a large-animal preclinical model for testing the safety and efficacy of embryonic stem (ES) cell-derived tissue replacement therapy. Putative cES cell lines were initiated from canine blastocysts harvested from natural matings. Times of harvest were estimated as 12-16 days after the presumed surge in circulating levels of luteinizing hormone. Four lines established from blastocysts harvested at days 13-14 postsurge satisfied most of the criteria for embryonic stem cells, whereas lines established after day 14 did not. One line, Fred Hutchinson dog (FHDO)-7, has been maintained through 34 passages and is presented here. FHDO-7 cells are alkaline phosphatase-positive and express both message and protein for the Oct4 transcription factor. They also express message for Nanog and telomerase but do not express message for Cdx2, which is associated with trophectoderm. Furthermore, they express a cluster of pluripotency-associated microRNAs (miRs) (miR-302b, miR-302c, and miR-367) characteristic of human and mouse ES cells. The FHDO-7 cells grow on feeder layers of modified mouse embryonic fibroblasts as flat colonies that resemble ES cells from mink, a close phylogenetic relative of dog. When cultured in nonadherent plates without feeders, the cells form embryoid bodies (EBs). Under various culture conditions, the EBs give rise to ectoderm-derived neuronal cells expressing ␥-enolase and 3-tubulin; mesoderm-derived cells producing collagen IIA1, cartilage, and bone; and endoderm-derived cells expressing ␣-fetoprotein or Clara cell-specific protein.
MicroRNAs are small (∼22 nt) RNAs that regulate gene expression and play important roles in both normal and disease physiology. The use of microarrays for global characterization of microRNA expression is becoming increasingly popular and has the potential to be a widely used and valuable research tool. However, microarray profiling of microRNA expression raises a number of data analytic challenges that must be addressed in order to obtain reliable results. We introduce here a universal reference microRNA reagent set as well as a series of nonhuman spiked-in synthetic microRNA controls, and demonstrate their use for quality control and between-array normalization of microRNA expression data. We also introduce diagnostic plots designed to assess and compare various normalization methods. We anticipate that the reagents and analytic approach presented here will be useful for improving the reliability of microRNA microarray experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.