Extra- and intracellular viruses in the biosphere outnumber their cellular hosts by at least one order of magnitude. How is this enormous domain of viruses organized? Sampling of the virosphere has been scarce and focused on viruses infecting humans, cultivated plants, and animals as well as those infecting well-studied bacteria. It has been relatively easy to cluster closely related viruses based on their genome sequences. However, it has been impossible to establish long-range evolutionary relationships as sequence homology diminishes. Recent advances in the evaluation of virus architecture by high-resolution structural analysis and elucidation of viral functions have allowed new opportunities for establishment of possible long-range phylogenic relationships-virus lineages. Here, we use a genomic approach to investigate a proposed virus lineage formed by bacteriophage PRD1, infecting gram-negative bacteria, and human adenovirus. The new member of this proposed lineage, bacteriophage Bam35, is morphologically indistinguishable from PRD1. It infects gram-positive hosts that evolutionarily separated from gram-negative bacteria more than one billion years ago. For example, it can be inferred from structural analysis of the coat protein sequence that the fold is very similar to that of PRD1. This and other observations made here support the idea that a common early ancestor for Bam35, PRD1, and adenoviruses existed.
Bacteriophages 6 and 13 are related enveloped double-stranded RNA viruses that infect gram-negative Pseudomonas syringae cells. 6 uses a pilus as a receptor, and 13 attaches to the host lipopolysaccharide. We compared the entry-related events of these two viruses, including receptor binding, envelope fusion, peptidoglycan penetration, and passage through the plasma membrane. The infection-related events are dependent on the multiplicity of infection in the case of 13 but not with 6. A temporal increase of host outer membrane permeability to lipophilic ions was observed from 1.5 to 4 min postinfection in both virus infections. This enhanced permeability period coincided with the fast dilution of octadecyl rhodamine B-labeled virus-associated lipid molecules. This result is in agreement with membrane fusion, and the presence of temporal virus-derived membrane patches on the outer membrane. Similar to 6, 13 contains a thermosensitive lytic enzyme involved in peptidoglycan penetration. The phage entry also caused a limited depolarization of the plasma membrane. Inhibition of host respiration considerably decreased the efficiency of irreversible virus binding and membrane fusion. An active role of cell energy metabolism in restoring the infection-induced defects in the cell envelope was also observed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.