Neuroblastoma (NB) development and progression are accompanied by changes in N-glycans attached to proteins. Here, we investigated the role of N-acetylglucosaminyltransferase-II (GnTII, MGAT2) protein substrates in neuroblastoma (NB) cells. MGAT2 was silenced in human BE(2)-C NB (HuNB) cells to generate a novel cell line, HuNB(-MGAT2), lacking complex type N-glycans, as in rat B35 NB cells. Changes in N-glycan types were confirmed by lectin binding assays in both cell lines, and the rescued cell line, HuNB(-/+MGAT2). Western blotting of cells heterologously expressing a voltage-gated K+ channel (Kv3.1b) showed that some hybrid N-glycans of Kv3.1b could be processed to complex type in HuNB(-/+MGAT2) cells. In comparing HuNB and HuNB(-MGAT2) cells, decreased complex N-glycans reduced anchorage-independent cell growth, cell proliferation, and cell invasiveness, while they enhanced cell-cell interactions. Cell proliferation, invasiveness and adhesion of the HuNB(-/+MGAT2) cells were more like the HuNB than HuNB(-MGAT2). Western blotting revealed lower protein levels of MMP-2, EGFR and Gab2 in glycosylation mutant cells relative to parental cells. Gelatin zymography demonstrated that decreased MMP-2 protein activity was related to lowered MMP-2 protein levels. Thus, our results support that decreased complex type N-glycans suppress cell proliferation and cell invasiveness in both NB cell lines via remodeling ECM.
Modifications in surface glycans attached to proteins via N-acetylglucosamine-β1-N-asparagine linkage have been linked to tumor development and progression. These modifications include complex N-glycans with high levels of branching, fucose and sialic acid residues. Previously, we silenced Mgat2 in neuroblastoma (NB) cells, which halted the conversion of hybrid type N-glycans to complex type, to generate a novel cell line, NB_1(-Mgat2). By comparing the aberrant cell properties of the NB_1(-Mgat2) cell line to the parental cell line (NB_1), we investigated the impact of eliminating complex type N-glycans on NB cell behavior. Further, the N-glycosylation pathway in the NB_1(-Mgat2) cell line was rescued by transiently transfecting cells with Mgat2, thus creating the NB_1(-/+Mgat2) cell line. Changes in the N-glycosylation pathway were verified by enhanced binding of E-PHA and L-PHA to proteins in the rescued cell line relative to those of the NB_1(-Mgat2) cell line. Also, western blotting of total membranes from the rescued cell line ectopically expressing a voltage-gated K+ channel (Kv3.1b) revealed that N-glycans of Kv3.1b were processed to complex type. By employment of various cell lines, we demonstrated that reduction of the complex type N-glycans diminished anchorage-independent cell growth, and enhanced cell-cell interactions. Two independent cell invasion assays showed that cell invasiveness was markedly lessened by lowering the levels of complex type N-glycans while cell mobility was only slightly modified. Neurites of NB cells were shortened by the absence of complex type N-glycans. Cell proliferation was reduced in NB cells with lowered levels of complex type N-glycans which resulted from hindered progression through G1+Go phases of the cell cycle. Overall, our results illustrate that reducing the ratio of complex to hybrid types of N-glycans diminishes aberrant NB cell behavior and thereby has a suppressive effect in cell proliferation, and cell dissociation and invasion phases of NB.
Glycosylation modulates growth, maintenance, and stress signaling processes. Consequently, altered N-glycosylation is associated with reduced fitness and disease. Therefore, expanding our understanding of N-glycans in altering biological processes is of utmost interest. Herein, clustered regularly interspaced short palindromic repeats/caspase9 (CRISPR/Cas9) technology was employed to engineer a glycosylation mutant Chinese Hamster Ovary (CHO) cell line, K16, which expresses predominantly hybrid type N-glycans. This newly engineered cell line enabled us to compare N-glycan effects on cellular properties of hybrid type N-glycans, to the well-established Pro−5 and Lec1 cell lines, which express complex and oligomannose types of N-glycans, respectively. Lectin binding studies revealed the predominant N-glycan expressed in K16 is hybrid type. Cell dissociation and migration assays demonstrated the greatest strength of cell–cell adhesion and fastest migratory rates for oligomannose N-glycans, and these properties decreased as oligomannose type were converted to hybrid type, and further decreased upon conversion to complex type. Next, we examined the roles of three general types of N-glycans on ectopic expression of E-cadherin, a cell–cell adhesion protein. Microscopy revealed more functional E-cadherin at the cell–cell border when N-glycans were oligomannose and these levels decreased as the oligomannose N-glycans were processed to hybrid and then to complex. Thus, we provide evidence that all three general types of N-glycans impact plasma membrane architecture and cellular properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.