Here, we introduce photocuring as a tool for the spatiotemporal control of vitrimer network synthesis via a photoinitiated thiol−ene polymerization. A difunctional norbornene monomer was synthesized containing ester linkages and pendant alcohol groups to participate in transesterification bond reshuffling reactions. The transesterification catalyst 1,5,7triazabicyclo[4.4.0]dec-5-ene (TBD) was shown to be highly effective in promoting transesterification in these networks at high temperatures, without interfering with external spatiotemporal, photoinitiated control over the thiol−ene polymerization and associated network formation. A strong Arrhenius dependence of the stress relaxation time with inverse temperature was observed from 145 to 175 °C, which suggests a relaxation controlled by the transesterification reaction rate, similar to previously studied thermally cured vitrimers. These thiol−ene vitrimers are implemented in nanoimprint lithography (NIL) for creating surface features, where imprinting may be performed repeatedly on the same sample due to the reversible nature of the bond exchange reactions. Because the networks are photocurable, hierarchical structures were generated by photopatterning and developing a microscale pattern and then performing NIL on the surface of this pattern.
Photoinitiation of polymerizations based on the copper(i)-catalyzed azide–alkyne cycloaddition (CuAAC) reaction enables spatio-temporal control and the formation of mechanically robust, highly glassy photopolymers. Here, we investigated several critical factors influencing photo-CuAAC polymerization kinetics via systematic variation of reaction conditions such as the physicochemical nature of the monomers; the copper salt and photoinitiator types and concentrations; light intensity; exposure time and solvent content. Real time Fourier transform infrared spectroscopy (FTIR) was used to monitor the polymerization kinetics in situ. Six different di-functional azide monomers and four different tri-functional alkyne monomers containing either aliphatic, aromatic, ether and/or carbamate substituents were synthesized and polymerized. Replacing carbamate structures with ether moieties in the monomers enabled an increase in conversion from 65% to 90% under similar irradiation conditions. The carbamate results in stiffer monomers and higher viscosity mixtures indicating that chain mobility and diffusion are key factors that determine the CuAAC network formation kinetics. Photoinitiation rates were manipulated by altering various aspects of the photo-reduction step; ultimately, a loading above 3 mol% per functional group for both the copper catalyst and the photoinitiator showed little or no rate dependence on concentration while a loading below 3 mol% exhibited 1st order rate dependence. Furthermore, a photoinitiating system consisting of camphorquinone resulted in 60% conversion in the dark after only 1 minute of 75 mW cm−2 light exposure at 400–500 nm, highlighting a unique characteristic of the CuAAC photopolymerization enabled by the combination of the copper(i)’s catalytic lifetime and the nature of the step-growth polymerization.
Step‐growth Diels–Alder (DA) networks using furan and maleimide groups are particularly useful in forming thermally remendable crosslinked polymers, due to the dramatic shift in equilibrium over a relatively low temperature range as compared with other diene‐dienophile pairs. However, the efficient healing observed in these materials at high temperature is directly tied to their ability to depolymerize and flow, and thermal treatment often results in deformation of the original shape. To overcome this limitation, a hybrid network material is developed, which consists of orthogonal Diels–Alder and polyurethane networks. Both step‐growth networks form simultaneously at elevated temperature without the presence of a catalyst. At high temperatures, the Diels–Alder network depolymerizes and flows into fractures through capillary action, while the polyurethane serves as a scaffold to maintain the overall shape of the sample. The DA network then repolymerizes at lower temperatures, creating a crosslinked, scar‐like “patch” throughout the crack. This healing process is repeatable without concern of monomer depletion. During heating through the glass transition, a shape memory “assist” is observed, which reverses some of the localized damage by bringing broken edges closer together. Samples are repeatedly damaged and then healed through temperature cycling, as evidenced through tensile fracture tests and electrochemical conductivity tests.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.