Building distributed applications that run in data centers is hard. The CamCube project explores the design of a shipping container sized data center with the goal of building an easier platform on which to build these applications. CamCube replaces the traditional switch-based network with a 3D torus topology, with each server directly connected to six other servers. As in other proposals, e.g. DCell and BCube, multi-hop routing in CamCube requires servers to participate in packet forwarding. To date, as in existing data centers, these approaches have all provided a single routing protocol for the applications.In this paper we explore if allowing applications to implement their own routing services is advantageous, and if we can support it efficiently. This is based on the observation that, due to the flexibility offered by the CamCube API, many applications implemented their own routing protocol in order to achieve specific application-level characteristics, such as trading off higher-latency for better path convergence. Using large-scale simulations we demonstrate the benefits and network-level impact of running multiple routing protocols. We demonstrate that applications are more efficient and do not generate additional control traffic overhead. This motivates us to design an extended routing service allowing easy implementation of application-specific routing protocols on CamCube. Finally, we demonstrate that the additional performance overhead incurred when using the extended routing service on a prototype CamCube is very low. * Work done during internship at Microsoft Research, Cambridge. Currently at
Recently, flash-based solid-state drives (SSDs) have become standard options for laptop and desktop storage, but their impact on enterprise server storage has not been studied. Provisioning server storage is challenging. It requires optimizing for the performance, capacity, power and reliability needs of the expected workload, all while minimizing financial costs.In this paper we analyze a number of workload traces from servers in both large and small data centers, to decide whether and how SSDs should be used to support each. We analyze both complete replacement of disks by SSDs, as well as use of SSDs as an intermediate tier between disks and DRAM. We describe an automated tool that, given device models and a block-level trace of a workload, determines the least-cost storage configuration that will support the workload's performance, capacity, and fault-tolerance requirements.We found that replacing disks by SSDs is not a costeffective option for any of our workloads, due to the low capacity per dollar of SSDs. Depending on the workload, the capacity per dollar of SSDs needs to increase by a factor of 3-3000 for an SSD-based solution to break even with a diskbased solution. Thus, without a large increase in SSD capacity per dollar, only the smallest volumes, such as system boot volumes, can be cost-effectively migrated to SSDs. The benefit of using SSDs as an intermediate caching tier is also limited: fewer than 10% of our workloads can reduce provisioning costs by using an SSD tier at today's capacity per dollar, and fewer than 20% can do so at any SSD capacity per dollar. Although SSDs are much more energy-efficient than enterprise disks, the energy savings are outweighed by the hardware costs, and comparable energy savings are achievable with low-power SATA disks.
Bugs in kernel extensions remain one of the main causes of poor operating system reliability despite proposed techniques that isolate extensions in separate protection domains to contain faults. We believe that previous fault isolation techniques are not widely used because they cannot isolate existing kernel extensions with low overhead on standard hardware. This is a hard problem because these extensions communicate with the kernel using a complex interface and they communicate frequently. We present BGI (Byte-Granularity Isolation), a new software fault isolation technique that addresses this problem. BGI uses efficient byte-granularity memory protection to isolate kernel extensions in separate protection domains that share the same address space. BGI ensures type safety for kernel objects and it can detect common types of errors inside domains. Our results show that BGI is practical: it can isolate Windows drivers without requiring changes to the source code and it introduces a CPU overhead between 0 and 16%. BGI can also find bugs during driver testing. We found 28 new bugs in widely used Windows drivers.
The norm for data analytics is now to run them on commodity clusters with MapReduce-like abstractions. One only needs to read the popular blogs to see the evidence of this. We believe that we could now say that "nobody ever got fired for using Hadoop on a cluster"! We completely agree that Hadoop on a cluster is the right solution for jobs where the input data is multi-terabyte or larger. However, in this position paper we ask if this is the right path for general purpose data analytics? Evidence suggests that many MapReduce-like jobs process relatively small input data sets (less than 14 GB). Memory has reached a GB/$ ratio such that it is now technically and financially feasible to have servers with 100s GB of DRAM. We therefore ask, should we be scaling by using single machines with very large memories rather than clusters? We conjecture that, in terms of hardware and programmer time, this may be a better option for the majority of data processing jobs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.