BackgroundIn a climate of cost containment, it is critical to analyze and optimize all perioperative variable costs. Fresh gas flow is one important variable that determines utilization of inhalational agents and can be tightly controlled by the anesthesia provider. Manufacturers of inhalational agents have recommendations for minimum gas flow for their respective agents. Any gas flow above these recommendations is considered misuse and leads to unnecessary expense. The purpose of this study was to characterize and quantify the excess use of inhalational agents by analyzing fresh gas flow rates for long duration cases.MethodsOver a span of three months, operating room records were analyzed for all procedures lasting greater than 4 hours. End tidal inhalation agent percentage for Sevoflurane and Isoflurane and fresh gas flows were analyzed. 303 unique patients with at least 4 hours of anesthesia time were included. Analysis excluded the first and last 30 minutes of all anesthetics to account for need for higher gas flows during induction/emergence of anesthesia. 152 patients received sevoflurane alone. 33 patients received isoflurane alone. 107 patients received both isoflurane and sevoflurane and were included in sevoflurane group given the higher gas flow needs of sevoflurane. 11 patients received neither agent and were excluded from analysis. We proceed with n = 292 unique patients. (259 in Sevo, 33 in iso) We used the two-sided one sample t-test setting 2 ml/min as the null for sevo and 1 ml/min as the null for iso; we ran analysis using a nonparametric test that didn’t require the fresh gas flow to be normally distributed - the two-sided one-sample Wilcoxon rank-sum test: p value = < 0.0001.ResultsThe results of our study revealed a sevoflurane (n = 259) mean fresh gas flow (L/min) 2.55 (95% CI, 2.45-2.66) - significantly different from null of 2 ml/min (p < 0.0001). Isoflurane (n = 33) mean fresh gas flows (L/min) 2.33 (95% CI, 2.00-2.66) - significantly different from null of 1 l/min (p < 0.0001).ConclusionManufacturer recommendation for sevoflurane is to maintain gas flows 1-2 l/min and Isoflurane at above 1 l/min. Given these recommendations, the anesthesia providers delivered fresh gas flows at least 28% higher than necessary for sevoflurane and at least 130% greater than necessary for isoflurane anesthetics that lasted greater than 4 hours. This is an area where cost reduction can be readily achieved. Future plans to realize a reduction in inhalational agent utilization include education of the benefits of fresh gas flow and instituting a low fresh gas flow policy.
We present a method that, in combination with a two-plane liquid-gas interface reconstruction in each computational cell, identifies thin features in Eulerian simulations of spray atomization that should undergo imminent breakup. Rapid identification of these features, which include gas sheets between colliding droplets, liquid sheets generated in bag breakup, and ligaments that breakup through Rayleigh-Plateau instabilities, allows for the on-the-fly application of subgridscale (SGS) breakup models for each type of thin feature in order to accurately predict the resulting topology change behavior. Without the feature identification abilities of the proposed method, thin features would experience numerical breakup when their characteristic size falls below that of the computational mesh. Such topology change is mesh-dependent, and therefore, unphysical. The proposed method incorporates the interface normal and centroid into any underlying connected-component labeling (CCL) algorithm to distinguish thin features from other fluid structures. We apply the method on data from simulations of offset binary droplet collision and turbulent air-blast atomization to verify its ability to identify individual thin features and demonstrate its usefulness for calculating relevant properties of the identified features.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.