Abstract:Remote sensing continues to be an invaluable tool in earthquake damage assessments and emergency response. This study evaluates the effectiveness of multilayer feedforward neural networks, radial basis neural networks, and Random Forests in detecting earthquake damage caused by the 2010 Port-au-Prince, Haiti 7.0 moment magnitude (M w ) event. Additionally, textural and structural features including entropy, dissimilarity, Laplacian of Gaussian, and rectangular fit are investigated as key variables for high spatial resolution imagery classification. Our findings show that each of the algorithms achieved nearly a 90% kernel density match using the United Nations Operational Satellite Applications Programme (UNITAR/UNOSAT) dataset as validation. The multilayer feedforward network was able to achieve an error rate below 40% in detecting damaged buildings. Spatial features of texture and structure were far more important in algorithmic classification than spectral information, highlighting the potential for future implementation of machine learning algorithms which use panchromatic or pansharpened imagery alone.
High-spatial-resolution satellite imagery has been widely applied for detailed urban mapping. Recently, deep convolutional neural networks (DCNNs) have shown promise in certain remote sensing applications, but they are still relatively new techniques for general urban mapping. This study examines the use of two DCNNs (U-Net and VGG16) to provide an automatic schema to support high-resolution mapping of buildings, road/open built-up, and vegetation cover. Using WorldView-2 imagery as input, we first applied an established OBIA method to characterize major urban land cover classes. An OBIA-derived urban map was then divided into a training and testing region to evaluate the DCNNs’ performance. For U-Net mapping, we were particularly interested in how sample size or the number of image tiles affect mapping accuracy. U-Net generated cross-validation accuracies ranging from 40.5 to 95.2% for training sample sizes from 32 to 4096 image tiles (each tile was 256 by 256 pixels). A per-pixel accuracy assessment led to 87.8 percent overall accuracy for the testing region, suggesting U-Net’s good generalization capabilities. For the VGG16 mapping, we proposed an object-based framing paradigm that retains spatial information and assists machine perception through Gaussian blurring. Gaussian blurring was used as a pre-processing step to enhance the contrast between objects of interest and background (contextual) information. Combined with the pre-trained VGG16 and transfer learning, this analytical approach generated a 77.3 percent overall accuracy for per-object assessment. The mapping accuracy could be further improved given more robust segmentation algorithms and better quantity/quality of training samples. Our study shows significant promise for DCNN implementation for urban mapping and our approach can transfer to a number of other remote sensing applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.