Background: Autism spectrum disorder (ASD) is associated with anxiety and sleep problems. We investigated transdermal electrical neuromodulation (TEN) of the cervical nerves in the neck as a safe, effective, comfortable and non-pharmacological therapy for decreasing anxiety and enhancing sleep quality in ASD. Methods: In this blinded, sham-controlled study, seven adolescents and young adults with high-functioning ASD underwent five consecutive treatment days, one day of the sham followed by four days of subthreshold TEN for 20 min. Anxiety-provoking cognitive tasks were performed after the sham/TEN. Measures of autonomic nervous system activity, including saliva α-amylase and cortisol, electrodermal activity, and heart rate variability, were collected from six participants. Results: Self-rated and caretaker-rated measures of anxiety were significantly improved with TEN treatment as compared to the sham, with effect sizes ranging from medium to large depending on the rating scale. Sleep scores from caretaker questionnaires also improved, but not significantly. Performance on two of the three anxiety-provoking cognitive tasks and heart rate variability significantly improved with TEN stimulation as compared to the sham. Four of the seven (57%) participants were responders, defined as a ≥ 30% improvement in self-reported anxiety. Salivary α-amylase decreased with more TEN sessions and decreased from the beginning to the end of the session on TEN days for responders. TEN was well-tolerated without significant adverse events. Conclusions: This study provides preliminary evidence that TEN is well-tolerated in individuals with ASD and can improve anxiety.
Supplemental Digital Content is Available in the Text.
Objectives: Electroencephalography is used in neurocritical care for detection of seizures and assessment of cortical function. Due to limited resolution from scalp electroencephalography, important abnormalities may not be readily detectable. We aimed to identify whether intracranial electroencephalography allows for improved methods of monitoring cortical function in children with severe traumatic brain injury. Design: This is a retrospective cohort study from a prospectively collected clinical database. We investigated the occurrence rate of epileptiform abnormalities detected on intracranial electroencephalography when compared with scalp electroencephalography. We also investigated the strength of association of quantitative electroencephalographic parameters and cerebral perfusion pressure between both intracranial and scalp electroencephalography. Setting: This is a single-institution study performed in the Phoenix Children’s Hospital PICU. Patients: Eleven children with severe traumatic brain injury requiring invasive neuromonitoring underwent implantation of a six-contact intracranial electrode as well as continuous surface electroencephalography. Interventions: None. Measurements and Main Results: Visual detection of epileptiform abnormalities was performed by pediatric epileptologists. Association of intracranial and scalp electroencephalography total power, alpha percentage, and alpha-delta power ratio to cerebral perfusion pressure was performed using univariate dynamic structural equations modeling. Demographic data were assessed by retrospective analysis. Intracranial and scalp electroencephalography was performed in 11 children. Three of 11 children had observed epileptiform abnormalities on intracranial electroencephalography. Two patients had epileptiform abnormalities identified exclusively on intracranial electroencephalography, and one patient had seizures initiating on intracranial electroencephalography before arising on scalp electroencephalography. Identification of epileptiform abnormalities was associated with subsequent identification of stroke or malignant cerebral edema. We observed statistically significant positive associations between intracranial alpha-delta power ratio to cerebral perfusion pressure in nine of 11 patients with increased strength of association on intracranial compared with scalp recordings. Conclusions: These findings suggest that intracranial electroencephalography may be useful for detection of secondary insult development in children with traumatic brain injury.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.