A moirésuperlattice formed by stacking two lattice mismatched transition metal dichalcogenide monolayers, functions as a diffusion barrier that affects the energy transport and dynamics of interlayer excitons (electron and hole spatially concentrated in different monolayers). In this work, we experimentally quantify the diffusion barrier experienced by interlayer excitons in hexagonal boron nitrideencapsulated molybdenum diselenide/tungsten diselenide (MoSe 2 / WSe 2 ) heterostructures with different twist angles. We observe the localization of interlayer excitons at low temperature and the temperature-activated diffusivity as a function of twist angle and hence attribute it to the deep periodic potentials arising from the moirésuperlattice. We further support the observations with theoretical calculations, Monte Carlo simulations, and a three-level model that represents the exciton dynamics at various temperatures.
While the anomalous Hall effect can manifest even without an external magnetic field, time reversal symmetry is nonetheless still broken by the internal magnetization of the sample. Recently, it has been shown that certain materials without an inversion center allow for a nonlinear type of anomalous Hall effect whilst retaining time reversal symmetry. The effect may arise from either Berry curvature or through various asymmetric scattering mechanisms. Here, we report the observation of an extremely large c-axis nonlinear anomalous Hall effect in the non-centrosymmetric Td phase of MoTe2 and WTe2 without intrinsic magnetic order. We find that the effect is dominated by skew-scattering at higher temperatures combined with another scattering process active at low temperatures. Application of higher bias yields an extremely large Hall ratio of E⊥/E|| = 2.47 and corresponding anomalous Hall conductivity of order 8 × 107 S/m.
Motivated by the search for type-II multiferroics, we present a comprehensive optical study of a complex oxide family of type-II multiferroic candidates: RbFe(MoO4)2, RbFe(SeO4)2, and RbFe(SO4)2. We employ rotational-anisotropy second harmonic generation spectroscopy (RA SHG), a technique sensitive to point symmetries, to address discrepancies in literature-assigned point/space groups and to identify the correct crystal structures. At room temperature we find that our RA SHG patterns rotate away from the crystal axes in RbFe(AO4)2 (A = Se, S), which identifies the lack of mirror symmetry and in-plane two-fold rotational symmetry. Also, the SHG efficiency of RbFe(SeO4)2 is two orders of magnitude stronger than RbFe(AO4)2 (A = Mo, S), which suggests broken inversion symmetry. Additionally, we present temperature-dependent linear optical characterizations near the band edge of this family of materials using ultraviolet-visible (UV-VIS) absorption spectroscopy. Included is experimental evidence of the band gap energy and band gap transition type for this family. Previously unreported sub-band gap absorption is also presented, which reveals prominent optical transitions, some with an unusual central energy temperature dependence. Furthermore, we find that by substituting the A-site in RbFe(AO4)2 (A = Mo, Se, S), the aforementioned transitions are spectrally tunable. Finally, we discuss the potential origin and impact of these tunable transitions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.