Quantum dot color conversion layers have the potential to greatly improve the efficiency and color performance of displays including and beyond liquid crystal displays. To fully realize these improvements, the quantum dots must be deposited and patterned at high resolution. One promising method for achieving this is through inkjet printing. In this paper we report on the fabrication and characterization of quantum dot inks, as well as films made from inkjet deposition of these materials.
Microfabricated devices have increasingly incorporated bacterial cells for microscale studies and exploiting cell-based functions in situ. However, the role of surface interactions in controlling the bacterial cell behavior is not well understood. In this study, microfluidic substrates of varied bacterial-binding affinity were used to probe the interaction-driven behavior of filamentous Escherichia coli. In particular, cell alignment under controlled shear flow as well as subsequent orientation and filamentation were compared between cells presenting distinct outer membrane phenotypes. We demonstrated that filaments retained position under flow, which allowed for dynamic single-cell monitoring with in situ elongation of over 100 µm for adherent cells. This maximum was not reached by planktonic cells and was, therefore, adhesion-dependent. The bound filaments initially aligned with flow under a range of flow rates and their continual elongation was traced in terms of length and growth path; analysis demonstrated that fimbriae-mediated adhesion increased growth rate, increased terminal length, as well as dramatically changed the adherent geometry, particularly buckling behavior. The effects to filament length and buckling were further exaggerated by the strongest, specificity-driven adhesion tested. Such surface-guided control of the elongation process may be valuable to yield interesting "living" filamentous structures in microdevices. In addition, this work may offer a biomedically relevant platform for further elucidation of filamentation as an immune-resistant morphology. Overall, this work should inspire broader exploration of microfabricated devices for the study and application of single bacterial cells.
The potential advantages of cell-based biohybrid devices over conventional nonliving systems drive the interest to control the behavior of the underlying biological cells in microdevices. Here, the authors studied how shear influenced the geometry and elongation of fimbriated filaments on affinity substrates. The cells were engineered to express FimH, which binds to mannose with a high affinity. A microfluidic channel was functionalized with RNAse B, which is rich in mannose residues, and the device was used to control the hydrodynamic force on live Escherichia coli under filamentous growth. It was discovered that filamentous E. coli cells adopt buckled geometry when the shear rate is low, but assume an extended geometry at high shear and align with the flow direction. The extension moves from bidirectional to preferentially downstream as the shear rate increases. Furthermore, living filaments slide easily on the substrate, and detach from the substrates at a rate nearly ten times greater than unfilamented live E. coli at high shear conditions (1000-4000 s). The hydrodynamic force and binding force experienced by the cells are further analyzed by COMSOL simulation and atomic force microscopy measurements, respectively, to explore the mechanism behind the living cell dynamics. Knowledge from this work helps guide design of interfacial properties and shear environments to control the geometry of living filamentous bacteria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.