This study examines the use of leaf area index (LAI) to inform variable-rate irrigation (VRI) for irrigated alfalfa (Medicago sativa). LAI is useful for predicting zone-specific evapotranspiration (ETc). One approach toward estimating LAI is to utilize the relationship between LAI and visible vegetation indices (VVIs) using unmanned aerial vehicle (UAV) imagery. This research has three objectives: (1) to measure and describe the within-field variation in LAI and canopy height for an irrigated alfalfa field, (2) to evaluate the relationships between the alfalfa LAI and various VVIs with and without field average canopy height, and (3) to use UAV images and field average canopy height to describe the within-field variation in LAI and the potential application to VRI. The study was conducted in 2021–2022 in Rexburg, Idaho. Over the course of the study, the measured LAI varied from 0.23 m2 m−2 to 11.28 m2 m−2 and canopy height varied from 6 cm to 65 cm. There was strong spatial clustering in the measured LAI but the spatial patterns were dynamic between dates. Among eleven VVIs evaluated, the four that combined green and red wavelengths but excluded blue wavelengths showed the most promise. For all VVIs, adding average canopy height to multiple linear regression improved LAI prediction. The regression model using the modified green–red vegetation index (MGRVI) and canopy height (R2 = 0.93) was applied to describe the spatial variation in the LAI among VRI zones. There were significant (p < 0.05) but not practical differences (<15%) between pre-defined zones. UAV imagery coupled with field average canopy height can be a useful tool for predicting LAI in alfalfa.
The first compilation of nutrient export coefficients for specific land uses in the United States was completed in 1980. Building off that effort, the “Measured Annual Nutrient loads from AGricultural Environments” (MANAGE) database was developed in 2006 to summarize annual field‐scale nitrogen (N) and phosphorus (P) runoff data from agricultural land uses. It also presents descriptive data such as land use, tillage, conservation practices, soil type, soil test P, slope, and fertilizer formulation, rate, and application method, along with runoff, precipitation, and soil erosion. Here, we update MANAGE to facilitate regional analyses, adding 27 studies and Level II ecoregion delineations for each of the 94 studies such that data are now available from 11 of the 50 North American Level II ecoregions, representing the major U.S. agricultural regions. This contemporary data repository is freely available from USDA Ag Data Commons to support scientific analyses, model evaluations, and management and policy decisions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.