CRISPR (clustered regularly interspaced short palindromic repeat) endonucleases are at the forefront of biotechnology, synthetic biology and gene editing. Methods for controlling enzyme properties promise to improve existing applications and enable new technologies. CRISPR enzymes rely on RNA cofactors to guide catalysis. Therefore, chemical modification of the guide RNA can be used to characterize structure-activity relationships within CRISPR ribonucleoprotein (RNP) enzymes and identify compatible chemistries for controlling activity. Here, we introduce chemical modifications to the sugar–phosphate backbone of Streptococcus pyogenes Cas9 CRISPR RNA (crRNA) to probe chemical and structural requirements. Ribose sugars that promoted or accommodated A-form helical architecture in and around the crRNA ‘seed’ region were tolerated best. A wider range of modifications were acceptable outside of the seed, especially D-2′-deoxyribose, and we exploited this property to facilitate exploration of greater chemical diversity within the seed. 2′-fluoro was the most compatible modification whereas bulkier O-methyl sugar modifications were less tolerated. Activity trends could be rationalized for selected crRNAs using RNP stability and DNA target binding experiments. Cas9 activity in vitro tolerated most chemical modifications at predicted 2′-hydroxyl contact positions, whereas editing activity in cells was much less tolerant. The biochemical principles of chemical modification identified here will guide CRISPR-Cas9 engineering and enable new or improved applications.
Phytocannabinoids have well-known cardiovascular implications. For instance, Δ9-tetrahydrocannabinol (Δ9-THC), the principal component of cannabis, induces tachycardia in humans. In order to understand the impact of phytocannabinoids on human cardiovascular health, there is a need to study the metabolism of phytocannabinoids by cardiac cytochromes p450 (CYPs). CYP2J2, the primary CYP of cardiomyocytes, is responsible for the metabolism of the endocannabinoid, anandamide (AEA), into cardioprotective epoxides (EET-EAs). Herein, we have investigated the kinetics of the direct metabolism of six phytocannabinoids (Δ9-THC, Δ8-tetrahydrocannabinol, cannabinol, cannabidiol, cannabigerol, and cannabichromene) by CYP2J2. CYP2J2 mainly produces 1'/1″-OH metabolites of these phytocannabinoids. These phytocannabinoids are metabolized with greater catalytic efficiency compared to the metabolism of AEA by CYP2J2. We have also determined that the phytocannabinoids are potent inhibitors of CYP2J2-mediated AEA metabolism, with Δ9-THC being the strongest inhibitor. Most of the inhibition of CYP2J2 by the phytocannabinoids follow a noncompetitive inhibition model, and therefore dramatically reduce the formation of EET-EAs by CYP2J2. Taken together, these data demonstrate that phytocannabinoids are directly metabolized by CYP2J2 and inhibit human cardiac CYP2J2, leading to a reduction in the formation of cardioprotective EET-EAs.
SUMMARY Large enzyme families catalyze metabolic diversification by virtue of their ability to use diverse chemical scaffolds. How enzyme families attain such functional diversity is not clear. Furthermore, duplication and promiscuity in such enzyme families limits their functional prediction, which has produced a burgeoning set of incompletely annotated genes in plant genomes. Here, we address these challenges using BAHD acyltransferases as a model. This fast‐evolving family expanded drastically in land plants, increasing from one to five copies in algae to approximately 100 copies in diploid angiosperm genomes. Compilation of >160 published activities helped visualize the chemical space occupied by this family and define eight different classes based on structural similarities between acceptor substrates. Using orthologous groups (OGs) across 52 sequenced plant genomes, we developed a method to predict BAHD acceptor substrate class utilization as well as origins of individual BAHD OGs in plant evolution. This method was validated using six novel and 28 previously characterized enzymes and helped improve putative substrate class predictions for BAHDs in the tomato genome. Our results also revealed that while cuticular wax and lignin biosynthetic activities were more ancient, anthocyanin acylation activity was fixed in BAHDs later near the origin of angiosperms. The OG‐based analysis enabled identification of signature motifs in anthocyanin‐acylating BAHDs, whose importance was validated via molecular dynamic simulations, site‐directed mutagenesis and kinetic assays. Our results not only describe how BAHDs contributed to evolution of multiple chemical phenotypes in the plant world but also propose a biocuration‐enabled approach for improved functional annotation of plant enzyme families.
The realism and accuracy of lipid bilayer simulations through molecular dynamics (MD) are heavily dependent on the lipid composition. While the field is pushing toward implementing more heterogeneous and realistic membrane compositions, a lack of high-resolution lipidomic data prevents some membrane protein systems from being modeled with the highest level of realism. Given the additional diversity of real-world cellular membranes and protein–lipid interactions, it is still not fully understood how altering membrane complexity affects modeled membrane protein functions or if it matters over long-timescale simulations. This is especially true for organisms whose membrane environments have little to no computational study, such as the plant plasma membrane. Tackling these issues in tandem, a generalized, realistic, and asymmetric plant plasma membrane with more than 10 different lipid species is constructed herein. Classical MD simulations of pure membrane constructs were performed to evaluate how altering the compositional complexity of the membrane impacted the plant membrane properties. The apo form of a plant sugar transporter, OsSWEET2b, was inserted into membrane models where lipid diversity was calculated in either a size-dependent or size-independent manner. An adaptive sampling simulation regime validated by Markov-state models was performed to capture the gating dynamics of OsSWEET2b in each of these membrane constructs. In comparison to previous OsSWEET2b simulations performed in a pure POPC bilayer, we confirm that simulations performed within a native-like membrane composition alter the stabilization of apo OsSWEET2b conformational states by ∼1 kcal/mol. The free-energy barriers of intermediate conformational states decrease when realistic membrane complexity is simplified, albeit roughly within sampling error, suggesting that protein-specific responses to membranes differ due to altered packing caused by compositional fluctuations. This work serves as a case study where a more realistic bilayer composition makes unbiased conformational sampling easier to achieve than with simplified bilayers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.