In this work, kinetic asphaltene precipitation was investigated using temperature fluctuations. Asphaltene precipitation was previously identified as a fully reversible process by altering the solution pressure or composition but only partially reversible using temperature changes. Slow kinetic asphaltene precipitation plays a critical role in the accurate monitoring of asphaltene precipitation, and previous reversibility studies need to be revisited in light of this phenomenon. Previous studies used a combination of precipitant addition and temperature changes to conclude that precipitated asphaltenes do not fully redissolve when the mixture temperature is changed. Modeling results reveal that precipitated asphaltenes should not be expected to redissolve, regardless of the magnitude of temperature changes, after a precipitant (e.g., dodecane) is added to the mixture. Consequently, this study was designed to isolate the influence of slow kinetics, precipitant addition, and temperature changes on the solubility and reversibility of asphaltene precipitation. Temperature cycling experiments were performed to investigate the reversibility of asphaltene precipitation and revealed that the process is fully reversible with temperature changes. This finding reinforces that, for the system in this study, asphaltene phase behavior is controlled by equilibrium thermodynamics and not a colloid stabilization model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.