Polymer coatings are frequently used to modify surface properties of inorganic substrates. However, the disparity in physical properties between polymer film and substrate often leads to residual stress development, which can be deleterious to the overall performance of coated materials. This work reports the molecular design of polymer films that dissipate stress upon irradiation with ultraviolet (UV) light. These polymers are synthesized by post-polymerization modification of the reactive polymer, poly(2-vinyl-4,4-dimethyl azlactone), to introduce dynamic crosslinks capable of light-initiated addition transfer fragmentation chemistry. Using a custom-built optical cantilever, contrasting film stress responses are observed between films containing dynamic bonds and analogous control films after UV light irradiation, which indicate successful stress relaxation. Further experiments demonstrate the complete relaxation of residual stress in dynamic films after an extended exposure, thereby generating a "stress-free" film. Films fabricated using this approach can be easily tailored to incorporate additional moieties to introduce desired surface properties for future application in a wide array of coatings.
Photomediated post-fabrication modification of reactive, azlactone-functionalized gels results in chemical gradients that facilitate fast and reversible, pH-responsive shape deformations.
Ever since the first observation of antagonism by microorganisms by Ernest Duchesne (E. Duchesne, Contribution à l’étude de la concurrence vitale chez les microorganisms. Antagonism entre les moisissures et les microbes, These pour obtenir le grade de docteur en medicine, Lyon, France, 1897), many scientists successfully identified and applied bacteriogenic bioactive compounds from soils to cure infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.