Our work analyzes the artificial intelligence and machine learning (AI/ML) research portfolios of six large research funding organizations from the United States [National Institutes of Health (NIH) and National Science Foundation (NSF)]; Europe [European Commission (EC) and European Research Council (ERC)]; China [National Natural Science Foundation of China (NNSFC)]; and Japan [Japan Society for the Promotion of Science (JSPS)]. The data for this analysis is based on 127,000 research clusters (RCs) that are derived from 1.4 billion citation links between 104.8 million documents from four databases (Dimensions, Microsoft Academic Graph, Web of Science, and the Chinese National Knowledge Infrastructure). Of these RCs, 600 large clusters are associated with AI/ML topics, and 161 of these AI/ML RCs are expected to experience extreme growth between May 2020 and May 2023. Funding acknowledgments (in the corpus of the 104.9 million documents) are used to characterize the overall AI/ML research portfolios of each organization. NNSFC is the largest funder of AI/ML research and disproportionately funds computer vision. The EC, RC, and JSPS focus more efforts on natural language processing and robotics. The NSF and ERC are more focused on fundamental advancement of AI/ML rather than on applications. They are more likely to participate in the RCs that are expected to have extreme growth. NIH funds the largest relative share of general AI/ML research papers (meaning in areas other than computer vision, natural language processing, and robotics). We briefly describe how insights such as these could be applied to portfolio management decision-making.
Word embeddings learn implicit biases from linguistic regularities captured by word cooccurrence statistics. By extending methods that quantify human-like biases in word embeddings, we introduce ValNorm, a novel intrinsic evaluation task and method to quantify the valence dimension of affect in human-rated word sets from social psychology. We apply Val-Norm on static word embeddings from seven languages (Chinese, English, German, Polish, Portuguese, Spanish, and Turkish) and from historical English text spanning 200 years. Val-Norm achieves consistently high accuracy in quantifying the valence of non-discriminatory, non-social group word sets. Specifically, Val-Norm achieves a Pearson correlation of ρ = 0.88 for human judgment scores of valence for 399 words collected to establish pleasantness norms in English. In contrast, we measure gender stereotypes using the same set of word embeddings and find that social biases vary across languages. Our results indicate that valence associations of non-discriminatory, non-social group words represent widely-shared associations, in seven languages and over 200 years.
The U.S. government and industry both see artificial intelligence as a pivotal technology for future growth and competitiveness. What skills will be needed to create, integrate, and deploy AI applications? This data brief analyzes market demand for AI-related jobs to determine their educational requirements, dominant sectors, and geographic distribution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.