We present optical photometry of six intermediate polars that exhibit transitions to a low-flux state. For four of these systems, DW Cnc, V515 And, V1223 Sgr, and RX J2133.7+5107, we are able to perform timing analysis in and out of the low states. We find that, for DW Cnc and V515 And, the dominant periodicities in the light curves change as the flux decreases, indicating a change in the sources’ accretion properties as they transition to the low state. For V1223 Sgr, we find that the variability is almost completely quenched at the lowest flux, but we do not find evidence for a changing accretion geometry. For RX J2133.7+5107, the temporal properties do not change in the low state, but we do see a period of enhanced accretion that is coincident with increased variability on the beat frequency, which we do not associate with a change in the accretion mechanisms in the system.
We present the Transiting Exoplanet Surveying Satellite light curve of the intermediate polar YY Draconis (YY Dra, also known as DO Dra). The power spectrum indicates that while there is stream-fed accretion for most of the observational period, there is a day-long, flat-bottomed low state at the beginning of 2020 during which the only periodic signal is ellipsoidal variation and there is no appreciable flickering. We interpret this low state to be a complete cessation of accretion, a phenomenon that has been observed only once before in an intermediate polar. Simultaneous ground-based observations of this faint state establish that when accretion is negligible, YY Dra fades to g = 17.37 ± 0.12, which we infer to be the magnitude of the combined photospheric contributions of the white dwarf and its red dwarf companion. Using survey photometry, we identify additional low states in 2018–2019 during which YY Dra repeatedly fades to—but never below—this threshold. This implies relatively frequent cessations in accretion. Spectroscopic observations during future episodes of negligible accretion can be used to directly measure the field strength of the white dwarf by Zeeman splitting. Separately, we search newly available catalogs of variable stars in an attempt to resolve the long-standing dispute over the proper identifier of this system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.