Decidual NK cells (dNK) are the main lymphocyte population in early pregnancy decidual mucosa. Although dNK decrease during pregnancy, they remain present in decidual tissues at term. First trimester dNK facilitate trophoblast invasion, provide protection against infections, and were shown to have many differences in their expression of NKRs, cytokines, and cytolytic capacity compared with peripheral blood NK cells (pNK). However, only limited data are available on the phenotype and function of term pregnancy dNK. In this study, dNK from human term pregnancy decidua basalis and decidua parietalis tissues were compared with pNK and first trimester dNK. Profound differences were found, including: 1) term pregnancy dNK have an increased degranulation response to K562 and PMA/ionomycin but lower capacity to respond to human CMV-infected cells; 2) term pregnancy dNK are not skewed toward recognition of HLA-C, as was previously shown for first trimester dNK; and 3) protein and gene expression profiles identified multiple differences between pNK, first trimester, and term pregnancy dNK, suggesting term pregnancy dNK are a distinct type of NK cells. Understanding the role of dNK throughout pregnancy is of high clinical relevance for studies aiming to prevent placental inflammatory disorders as well as maternal-to-fetal transmission of pathogens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.