Comprehensive study on electron impact for acetylene molecule is performed in terms of eigenphase diagram, electronic excitation cross sections as well as total cross section calculations from 1 eV to 5000 eV in this article. Computation of cross section over such a wide range of energy is reported for the first time. We have employed two distinct formalisms to derive cross sections in these impact energies. From 1 eV to ionization threshold of the target we have used the ab initio R-matrix method and then spherical complex optical potential method beyond that. At the crossing point of energy, both theories matched quite well and hence prove that they are consistent with each other. The results presented here expectedly give excellent agreement with other experimental values and theories available. The techniques employed here are well established and can be used to predict cross sections for other targets where data are scarce or not available. Also, this methodology may be integrated to online database such as Virtual Atomic and Molecular Data Centre to provide cross section data required by any user.
Theoretical rotationally elastic total cross sections for electron scattering from methanol over the incident energy range 0.1-2000 eV are presented. The computation of such cross sections for methanol is reported over such an extended energy range. We have employed two distinct formalisms to compute the cross sections across this energy range; between 0.1 eV and the ionization threshold of the target we have used the ab initio R-matrix method, while at higher energies the spherical complex optical potential method is invoked. The results from both formalisms match quite well at energies where they overlap and hence imply that they are consistent with each other. These total cross-section results are also in very good agreement with available experimental data and earlier theoretical data. The composite methodology employed here is well established and can be used to predict cross sections for other targets where data is scarce or not available.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.