The past decade has seen unprecedented growth in the development of new chemical methods that proceed by mechanisms involving radical intermediates. This new attention has served to highlight a long-standing challenge in the field of radical chemistry -that of controlling absolute stereochemistry. This Review will examine developments using a strategy that offers enormous potential, in which attractive non-covalent interactions between a chiral catalyst and the substrate are leveraged to exert enantiocontrol. In a simplistic sense, such an approach mimics the modes of activation and control in enzyme catalysis and the realization that this can be achieved in the context of small-molecule catalysts has had sizable impact on the field of asymmetric catalysis in recent years. This strategy is now starting to quickly gather pace as a powerful approach for control of enantioselectivity in radical reactions and we hope that this focused survey of progress so far will inspire future developments in the area.
Minisci-type reactions
constitute one of the most powerful methods
for building up complexity around basic heteroarenes. The most desirable
variants involve formal oxidative coupling of a C–H bond on
each partner, leading back to the simplest possible starting materials.
We herein disclose a method that enables such a coupling of linear
amides and heteroarenes with full control of enantioselectivity at
the newly formed stereocenter as well as site selectivity on both
the heteroarene and the amide. This is achieved by the use of a chiral
phosphoric acid catalyst in conjunction with diacetyl as a combined
hydrogen atom transfer reagent and oxidant. Diacetyl is directly photoexcitable,
and thus, no extraneous photocatalyst is required: an added feature
that contributes to the simplicity and practicality of the protocol.
The
Minisci reaction is one of the most valuable methods for directly
functionalizing basic heteroarenes to form carbon–carbon bonds.
Use of prochiral, heteroatom-substituted radicals results in stereocenters
being formed adjacent to the heteroaromatic system, generating motifs
which are valuable in medicinal chemistry and chiral ligand design.
Recently a highly enantioselective and regioselective protocol for
the Minisci reaction was developed, using chiral phosphoric acid catalysis.
However, the precise mechanism by which this process operated and
the origin of selectivity remained unclear, making it challenging
to develop the reaction more generally. Herein we report further experimental
mechanistic studies which feed into detailed DFT calculations that
probe the precise nature of the stereochemistry-determining step.
Computational and experimental evidence together support Curtin–Hammett
control in this reaction, with initial radical addition being quick
and reversible, and enantioselectivity being achieved in the subsequent
slower, irreversible deprotonation. A detailed survey via DFT calculations
assessed a number of different possibilities for selectivity-determining
deprotonation of the radical cation intermediate. Computations point
to a clear preference for an initially unexpected mode of internal
deprotonation enacted by the amide group, which is a crucial structural
feature of the radical precursor, with the assistance of the associated
chiral phosphate. This unconventional stereodetermining step underpins
the high enantioselectivities and regioselectivities observed. The
mechanistic model was further validated by applying it to a test set
of substrates possessing varied structural features.
Catalytic enantioselective Minisci reactions have recently been developed but all instances so far utilize α-amino radical coupling partners. We report a substantial evolution of the enantioselective Minisci reaction that enables α-hydroxy radicals to be used, providing valuable enantioenriched secondary alcohol products. This is achieved through the direct oxidative coupling of two CÀ H bonds on simple alcohol and pyridine partners through a hydrogen atom transfer (HAT)-driven approach: a challenging process to achieve due to the numerous side reactions that can occur. Our approach is highly regioselective as well as highly enantioselective. Dicumyl peroxide, upon irradiation with 390 nm light, serves as both HAT reagent and oxidant whilst selectivity is controlled by use of a chiral phosphoric acid catalyst. Computational and experimental evidence provide mechanistic insight as to the origin of selectivity, revealing a stereodetermining deprotonation step distinct from the analogous reaction of amidecontaining substrates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.