BackgroundMapping the intracellular fluxes for established mammalian cell lines becomes increasingly important for scientific and economic reasons. However, this is being hampered by the high complexity of metabolic networks, particularly concerning compartmentation.ResultsIntracellular fluxes of the CHO-K1 cell line central carbon metabolism were successfully determined for a complex network using non-stationary 13C metabolic flux analysis. Mass isotopomers of extracellular metabolites were determined using [U-13C6] glucose as labeled substrate. Metabolic compartmentation and extracellular transport reversibility proved essential to successfully reproduce the dynamics of the labeling patterns. Alanine and pyruvate reversibility changed dynamically even if their net production fluxes remained constant. Cataplerotic fluxes of cytosolic phosphoenolpyruvate carboxykinase and mitochondrial malic enzyme and pyruvate carboxylase were successfully determined. Glycolytic pyruvate channeling to lactate was modeled by including a separate pyruvate pool. In the exponential growth phase, alanine, glycine and glutamate were excreted, and glutamine, aspartate, asparagine and serine were taken up; however, all these amino acids except asparagine were exchanged reversibly with the media. High fluxes were determined in the pentose phosphate pathway and the TCA cycle. The latter was fueled mainly by glucose but also by amino acid catabolism.ConclusionsThe CHO-K1 central metabolism in controlled batch culture proves to be robust. It has the main purpose to ensure fast growth on a mixture of substrates and also to mitigate oxidative stress. It achieves this by using compartmentation to control NADPH and NADH availability and by simultaneous synthesis and catabolism of amino acids.
The physiology of animal cells is characterized by constantly changing environmental conditions and adapting cellular responses. Applied dynamic metabolic flux analysis captures metabolic dynamics and can be applied to industrially relevant cultivation conditions. We investigated the impact of glutamine availability or limitation on the physiology of CHO K1 cells in eight different batch and fed-batch cultivations. Varying glutamine availability resulted in global metabolic changes. We observed dose-dependent effects of glutamine in batch cultivation. Identifying metabolic links from the glutamine metabolism to specific metabolic pathways, we show that glutamine feeding results in its coupling to tricarboxylic acid cycle fluxes and in its decoupling from metabolic waste production. We provide a mechanistic explanation of the cellular responses upon mild or severe glutamine limitation and ammonia stress. The growth rate of CHO K1 decreased with increasing ammonia levels in the supernatant. On the other hand, growth, especially culture longevity, was stimulated at mild glutamine-limiting conditions. Flux rearrangements in the pyruvate and amino acid metabolism compensate glutamine limitation by consumption of alternative carbon sources and facilitating glutamine synthesis and mitigate ammonia stress as result of glutamine abundance.
Metabolic compartmentation represents a major characteristic of eukaryotic cells. The analysis of compartmented metabolic networks is complicated by separation and parallelization of pathways, intracellular transport, and the need for regulatory systems to mediate communication between interdependent compartments. Metabolic flux analysis (MFA) has the potential to reveal compartmented metabolic events, although it is a challenging task requiring demanding experimental techniques and sophisticated modeling. At present no ready-made solution can be provided to cope with the complexity of compartmented metabolic networks, but new powerful tools are emerging. This review gives an overview of different strategies to approach this issue, focusing on different MFA methods and highlighting the additional information that should be included to improve the outcome of an experiment and associate estimation procedures.
One of the hallmarks of sporadic Parkinson's disease is degeneration of dopaminergic neurons in the pars compacta of the substantia nigra. The aetiopathogenesis of this degeneration is still not fully understood, with dysfunction of many biochemical pathways in different subsystems suggested to be involved. Recent advances in constraint-based modelling approaches hold great potential to systematically examine the relative contribution of dysfunction in disparate pathways to dopaminergic neuronal degeneration, but few studies have employed these methods in Parkinson's disease research. Therefore, this review outlines a framework for future constraint-based modelling of dopaminergic neuronal metabolism to decipher the multi-factorial mechanisms underlying the neuronal pathology of Parkinson's disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.