Key Points Alternatively polarized macrophages are abundant constituents of the tumor microenvironment in T-cell lymphoproliferative disorders. GATA-3 expression identifies a subset of PTCL, NOS with a distinct cytokine profile and inferior survival.
Purpose T-cell lymphomas are a molecularly heterogeneous group of non-Hodgkin lymphomas (NHL) that account for a disproportionate number of NHL disease-related deaths due to their inherent and acquired resistance to standard multiagent chemotherapy regimens. Despite their molecular heterogeneity and frequent loss of various T-cell specific receptors, the T-cell antigen receptor is retained in the majority of these lymphomas. As T-cell receptor (TCR) engagement activates a number of signaling pathways and transcription factors that regulate T-cell growth and survival, we examined the TCR’s role in mediating resistance to chemotherapy. Experimental Design Genetic and pharmacologic strategies were utilized to determine the contribution of tyrosine kinases and transcription factors activated in conventional T cells following T-cell receptor (TCR) engagement in acquired chemotherapy resistance in primary T-cell lymphoma cells and patient-derived cell lines. Results Here we report that TCR signaling activates a signaling axis that includes ITK, NF-κB, and GATA-3, and promotes chemotherapy resistance. Conclusions These observations have significant therapeutic implications, as pharmacologic inhibition of ITK prevented activation of this signaling axis and overcame chemotherapy resistance.
Purpose Monocytes and their progeny are abundant constituents of the tumor microenvironment in lymphoproliferative disorders, including chronic lymphocytic leukemia (CLL). Monocyte-derived cells, including nurse-like cells (NLC) in CLL, promote lymphocyte proliferation and survival, confer resistance to chemotherapy, and are associated with more rapid disease progression. Colony-stimulating factor-1 receptor (CSF-1R) regulates the homeostatic survival of tissue-resident macrophages. Therefore, we sought to determine whether CSF-1R is similarly required for NLC survival. Experimental Design CSF-1R expression by NLC was examined by flow cytometry and immunohistochemistry. CSF-1R blocking studies were performed using an antagonistic monoclonal antibody to examine its role in NLC generation and in CLL survival. A rational search strategy was performed to identify a novel tyrosine kinase inhibitor (TKI) targeting CSF-1R. The influence of TKI-mediated CSF-1R inhibition on NLC and CLL viability was examined. Results We demonstrated that the generation and survival of NLC in CLL is dependent upon CSF-1R signaling. CSF-1R blockade is associated with significant depletion of NLC and consequently inhibits CLL B-cell survival. We found that the JAK2/FLT3 inhibitor pacritinib suppresses CSF-1R signaling, thereby preventing the generation and survival of NLC and impairs CLL B-cell viability. Conclusions CSF-1R is a novel therapeutic target that may be exploited in lymphoproliferative disorders, like CLL, that are dependent upon lymphoma-associated macrophages.
Purpose: Peripheral T-cell lymphomas are clinically aggressive and usually fatal, as few complete or durable remissions are achieved with currently available therapies. Recent evidence supports a critical role for lymphoma-associated macrophages during T-cell lymphoma progression, but the specific signals involved in the cross-talk between malignant T cells and their microenvironment are poorly understood. Colony-stimulator factor 1 receptor (CSF1R, CD115) is required for the homeostatic survival of tissue-resident macrophages. Interestingly, its aberrant expression has been reported in a subset of tumors. In this article, we evaluated its expression and oncogenic role in T-cell lymphomas.Experimental Design: Loss-of-function studies, including pharmacologic inhibition with a clinically available tyrosine kinase inhibitor, pexidartinib, were performed in multiple in vitro and in vivo models. In addition, proteomic and genomic screenings were performed to discover signaling pathways that are activated downstream of CSF1R signaling.Results: We observed that CSF1R is aberrantly expressed in many T-cell lymphomas, including a significant number of peripheral and cutaneous T-cell lymphomas. Colony-stimulating factor 1 (CSF1), in an autocrine or paracrine-dependent manner, leads to CSF1R autophosphorylation and activation in malignant T cells. Furthermore, CSF1R signaling was associated with significant changes in gene expression and in the phosphoproteome, implicating PI3K/AKT/mTOR in CSF1R-mediated T-cell lymphoma growth. We also demonstrated that inhibition of CSF1R in vivo and in vitro models is associated with decreased T-cell lymphoma growth.Conclusions: Collectively, these findings implicate CSF1R in T-cell lymphomagenesis and have significant therapeutic implications.
Survival following anthracycline-based chemotherapy remains poor among patients with most T-cell lymphoproliferative disorders. This may be attributed, at least in part, to cell-autonomous mechanisms of chemotherapy resistance observed in these lymphomas, including the loss of important tumor suppressors and the activation of signaling cascades that culminate in the expression and activation of transcription factors promoting cell growth and survival. Therefore, the identification of novel therapeutic targets is needed. In an effort to identify novel tumor dependencies, we performed a loss-of-function screen targeting ≈500 kinases and identified polo-like kinase 1 (PLK-1). This kinase has been implicated in the molecular cross-talk with important oncogenes, including c-Myc, which is itself an attractive therapeutic target in subsets of T-cell lymphomas and in high-grade (“double hit”) diffuse large B-cell lymphomas. We demonstrate that PLK-1 expression is prevalent among these aggressive lymphomas and associated with c-myc expression. Importantly, PLK-1 inhibtion with the PLK-1 inhibitor volasertib significantly reduced downstream c-myc phosphorylation and impaired BRD4 binding to the c-myc gene, thus inhibiting c-myc transcription. Therefore, volasertib led to a nearly complete loss of c-myc expression in cell lines and tumor xenografts, induced apoptosis, and thus warrants further investigation in these aggressive lymphomas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.