Iron (Fe), an essential element for plant growth, is abundant in soil but with low bioavailability. Thus, plants developed specialized mechanisms to sequester the element. Beneficial microbes have recently become a favored method to promote plant growth through increased uptake of essential micronutrients, like Fe, yet little is known of their mechanisms of action. Functional mutants of the epiphytic bacterium Azospirillum brasilense, a prolific grass-root colonizer, were used to examine mechanisms for promoting iron uptake in Zea mays. Mutants included HM053, FP10, and ipdC, which have varying capacities for biological nitrogen fixation and production of the plant hormone auxin. Using radioactive iron-59 tracing and inductively coupled plasma mass spectrometry, we documented significant differences in host uptake of Fe2+/3+ correlating with mutant biological function. Radioactive carbon-11, administered to plants as 11CO2, provided insights into shifts in host usage of ‘new’ carbon resources in the presence of these beneficial microbes. Of the mutants examined, HM053 exhibited the greatest influence on host Fe uptake with increased plant allocation of 11C-resources to roots where they were transformed and exuded as 11C-acidic substrates to aid in Fe-chelation, and increased C-11 partitioning into citric acid, nicotianamine and histidine to aid in the in situ translocation of Fe once assimilated.
Herbaspirillum seropedicae, as an endophyte and prolific root colonizer of numerous cereal crops, occupies an important ecological niche in agriculture because of its ability to promote plant growth and potentially improve crop yield. More importantly, there exists the untapped potential to harness its ability, as a diazotroph, to fix atmospheric N2 as an alternative nitrogen resource to synthetic fertilizers. While mechanisms for plant growth promotion remain controversial, especially in cereal crops, one irrefutable fact is these microorganisms rely heavily on plant-borne carbon as their main energy source in support of their own growth and biological functions. Biological nitrogen fixation (BNF), a microbial function that is reliant on nitrogenase enzyme activity, is extremely sensitive to the localized nitrogen environment of the microorganism. However, whether internal root colonization can serve to shield the microorganisms and de-sensitize nitrogenase activity to changes in the soil nitrogen status remains unanswered. We used RAM10, a GFP-reporting strain of H. seropedicae, and administered radioactive 11CO2 tracer to intact 3-week-old maize leaves and followed 11C-photosynthates to sites within intact roots where actively fluorescing microbial colonies assimilated the tracer. We examined the influence of administering either 1 mM or 10 mM nitrate during plant growth on microbial demands for plant-borne 11C. Nitrogenase activity was also examined under the same growth conditions using the acetylene reduction assay. We found that plant growth under low nitrate resulted in higher nitrogenase activity as well as higher microbial demands for plant-borne carbon than plant growth under high nitrate. However, carbon availability was significantly diminished under low nitrate growth due to reduced host CO2 fixation and reduced allocation of carbon resources to the roots. This response of the host caused significant inhibition of microbial growth. In summary, internal root colonization did little to shield these endophytic microorganisms from the nitrogen environment.
Azospirillum brasilense is a prolific grass-root colonizing bacteria well-known for its ability to promote plant growth in several cereal crops. Here we show that one of the mechanisms of action in boosting plant performance is through increased assimilation of the micronutrient manganese by the host. Using radioactive 52Mn2+ (t½ 5.59 d), we examined the uptake kinetics of this micronutrient in young maize plants, comparing the performance of three functional mutants of A. brasilense, including HM053, a high auxin-producing and high N2-fixing strain; ipdC, a strain with a reduced auxin biosynthesis capacity; and FP10, a strain deficient in N2-fixation that still produces auxin. HM053 had the greatest effect on host 52Mn2+ uptake, with a significant increase seen in shoot radioactivity relative to non-inoculated controls. LA-ICP-MS analysis of root sections revealed higher manganese distributions in the endodermis of HM053-inoculated plants and overall higher manganese concentrations in leaves. Finally, increased leaf manganese concentration stimulated photosynthesis as determined by measuring leaf fixation of radioactive 11CO2 with commensurate increases in chlorophyll concentration.
In agriculture, plant growth promoting bacteria (PGPB) are increasingly used for reducing environmental stress‐related crop losses through mutualistic actions of these microorganisms, activating physiological and biochemical responses, building tolerances within their hosts. Here we report the use of radioactive carbon‐11 (t½ 20.4 min) to examine the metabolic and physiological responses of Zea mays to Azospirillum brasilense (HM053) inoculation while plants were subjected to salinity and low nitrogen stresses. Host metabolism of “new” carbon resources (as 11C) and physiology including [11C]‐photosynthate translocation were measured in response to imposed growth conditions. Salinity stress caused shortened, dense root growth with a 6‐fold increase in foliar [11C]‐raffinose, a potent osmolyte. ICP‐MS analyses revealed increased foliar Na+ levels at the expense of K+. HM053 inoculation relieved these effects, reinstating normal root growth, lowering [11C]‐raffinose levels while increasing [11C]‐sucrose and its translocation to the roots. Na+ levels remained elevated with inoculation, but K+ levels were boosted slightly. Low nitrogen stress yielded longer roots possessing high levels of anthocyanins. Metabolic analysis revealed significant shifts in “new” carbon partitioning into the amino acid pool under low nitrogen stress, with significant increases in foliar [11C]‐glutamate, [11C]‐aspartate, and [11C]‐asparagine, a noted osmoprotectant. 11CO2 fixation and [11C]‐photosynthate translocation also decreased, limiting carbon supply to roots. However, starch levels in roots were reduced under nitrogen limitation, suggesting that carbon repartitioning could be a compensatory action to support root growth. Finally, inoculation with HM053 re‐instated normal root growth, reduced anthocyanin, boosted root starch, and returned 11C‐allocation levels back to those of unstressed plants.
In agriculture, boron is known to play a critical role in healthy plant growth. To dissect the role of boron in maize metabolism, radioactive carbon-11 (t½ 20.4 min) was used to examine the physiological and metabolic responses of 3-week-old B73 maize plants to different levels of boron spanning 0 mM, 0.05 mM, and 0.5 mM boric acid (BA) treatments. Growth behavior, of both shoots and roots, was recorded and correlated to plant physiological responses. 11CO2 fixation, leaf export of [11C]-photosynthates, and their rate of transport increased systematically with increasing BA concentrations, while the fraction of [11C]-photosynthates delivered to the roots under 0 mM and 0.5 mM BA treatments was lower than under 0.05 mM BA treatment, likely due to changes in root growth. Additionally, solid-phase extraction coupled with gamma counting, radio-fluorescence thin layer chromatography, and radio-fluorescence high-performance liquid chromatography techniques applied to tissue extracts provided insight into the effects of BA treatment on ‘new’ carbon (as 11C) metabolism. Most notable was the strong influence reducing boron levels had on raising 11C partitioning into glutamine, aspartic acid, and asparagine. Altogether, the growth of maize under different regimes of boron affected 11CO2 fixation, its metabolism and allocation belowground, and altered root growth. Finally, inductively coupled plasma mass spectrometry provided insight into the effects of BA treatment on plant uptake of other essential nutrients. Here, levels of boron and zinc systematically increased in foliar tissues with increasing BA concentration. However, levels of magnesium, potassium, calcium, manganese, and iron remained unaffected by treatment. The rise in foliar zinc levels with increased BA concentration may contribute to improved 11CO2 fixation under these conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.